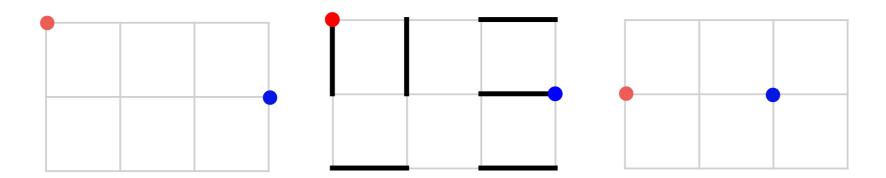
OPEN PROBLEMS IN DIMERS AND BUNDLES

Richard Kenyon (Yale)

Problems

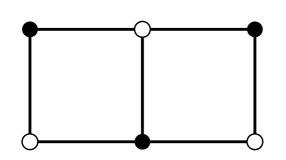
- 1. "Dimer random walks"
- 2. Weights \leftrightarrow probabilities
- 3. Double-dimer loops
- 5. Double-dimer lamination coefficients
- 7. Triple-dimer web coefficients

Dimer random walks

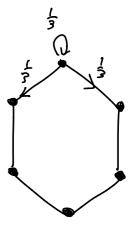


On a graph G, a (random) dimer cover is a (random) permutation of the vertices.

Problem 1. For an iid sequence of dimer covers, study the associated random walks on permutations.

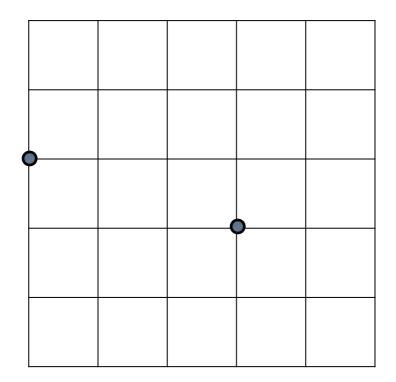


$$\frac{1}{3}(1 + e_{(12)} + e_{(2,3)})$$



For this graph, just record x coordinates of vertices, in S_3 .

Ex. $n \times n$ grid on torus

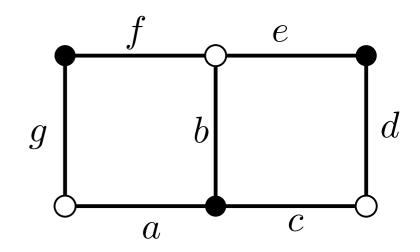


Each particle does SRW, coupled to avoid each other.

Edge weights and bundles

Let ν_e be a positive real weight on each edge e.

$$Pr(\text{dimer cover } m) = \frac{1}{Z} \prod_{e \in m} \nu_e$$



Observation: For bipartite graphs, we can think of ν_e as determining a connection on a line bundle.

Vector bundle: A copy V_u of a fixed vector space V at each vertex u.

Connection: an isomorphism $\phi_{uv}: V_u \to V_v$ for adjacent vertices, with $\phi_{vu} = \phi_{uv}^{-1}$.

Line bundle: A vector bundle where V is one-dimensional.

$$\mathbb{R} \xrightarrow{a} \mathbb{R}$$

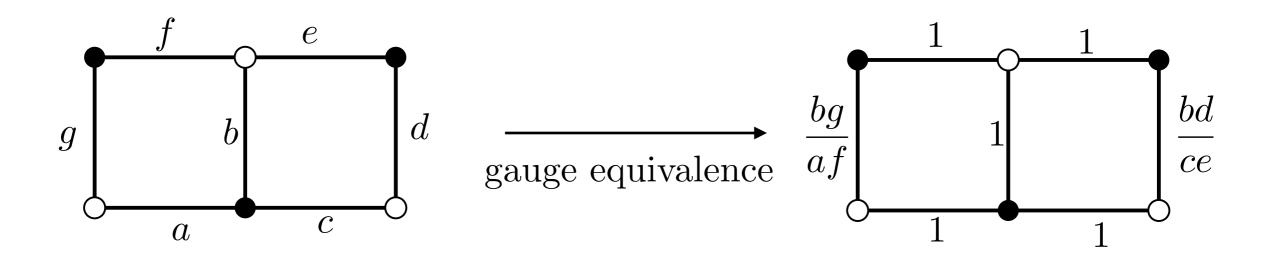
For a line bundle, ϕ_{uv} is just multiplication by a (real) scalar.

For a bipartite graph with edge weights ν_e , define a line bundle with connection $\phi_{wb} = \nu_e$ on edges wb oriented from white to black.

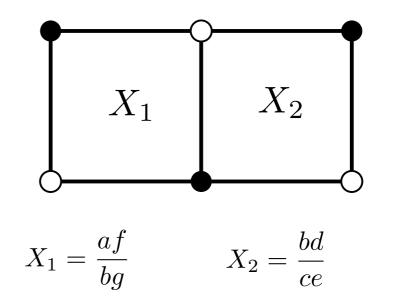
$$\mathbb{R} \xrightarrow{a} \mathbb{R}$$

How is this helpful?

- 1. Gauge symmetry: changing basis at V_v corresponds to multiplying all edge weights (of edge incident to v) by a constant. This does not change the probability measure.
- 2. Generalizes naturally to other groups, e.g. $SL_n(\mathbb{R})$, see below.
- 3. Connects the problem to geometry



$$\{\text{weights}\}/\{\text{gauge}\} \cong \mathbb{R}^F$$



Problem 2. Study map from "face weights" $\{X_f\}$ to edge probabilities $\{Pr(e)\}$. (cycle basis)

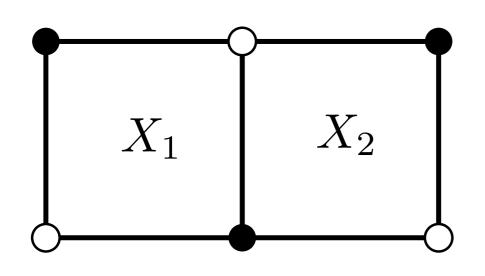
What is the space of edge probabilities?

 $\Omega = \{\text{Fractional dimer covers}\}\$ $= \text{functions in } [0, 1]^E \text{ summing to 1 at each vertex.}$

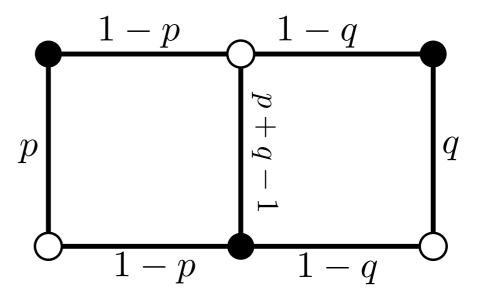
Thm: $\Omega \subset [0,1]^E$ is a polytope whose vertices are the dimer covers.

Note the vector of edge probabilities $\vec{p} = (Pr(e))_{e \in E}$ lies in Ω ; it is in fact the center of mass of the measure μ .

face weights



edge probabilities



$$\Psi: \mathbb{R}_+^F \to \Omega$$

$$\Psi((X_f)_{f\in F}) = (Pr(e))_{e\in E}$$

$$(X_1, X_2) \mapsto (p, q) = \left(\frac{1 + X_2}{1 + X_2 + X_1 X_2}, \frac{X_2 + X_1 X_2}{1 + X_2 + X_1 X_2}\right)$$

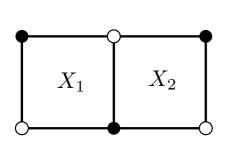
Thm: If G is nondegenerate, Ψ is a diffeomorphism.

(Nondegenerate: each edge has 0 < Pr(e) < 1)

(Nondegenerate: Ω has interior in \mathbb{R}^F .)

Problem 3. Is det $\nabla \Psi$ subtraction free? Stable? What is the degree of Ψ as a rational map? Are all roots of $\Psi(\vec{X}) = \vec{p}$ real?

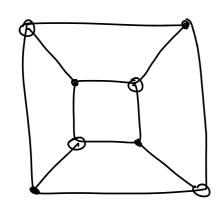
Example:



$$\det \nabla \Psi = \frac{X_2}{(1 + X_2 + X_1 X_2)^3}$$

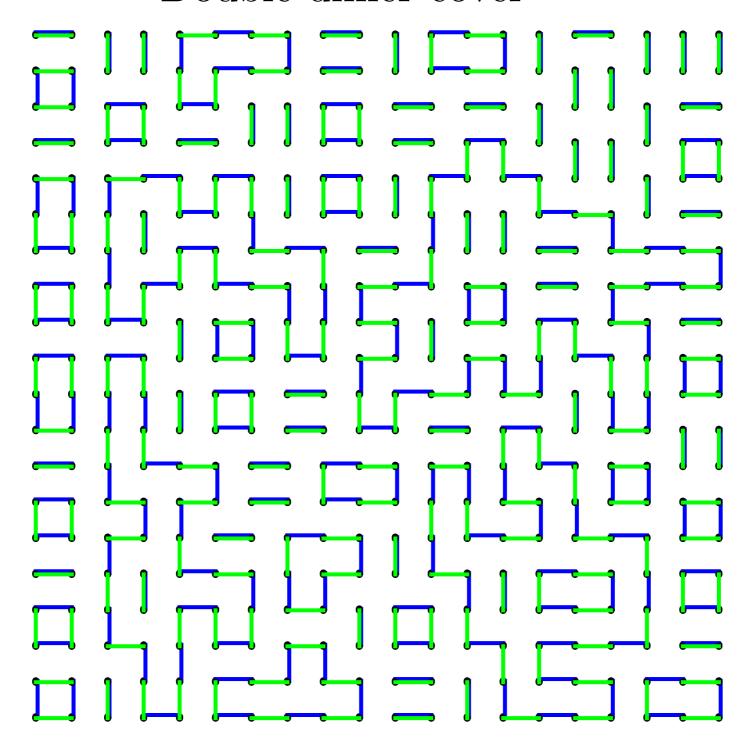
$$\Psi^{-1}(p,q) = \left(\frac{1-p}{p+q-1}, \frac{p+q-1}{1-q}\right)$$

Example:



 Ψ has degree 2: Given \vec{p} , there are two choices of $\{X_f\}$ (only one of them positive) such that $\Psi(\{X_f\}) = \vec{p}$.

Double-dimer cover

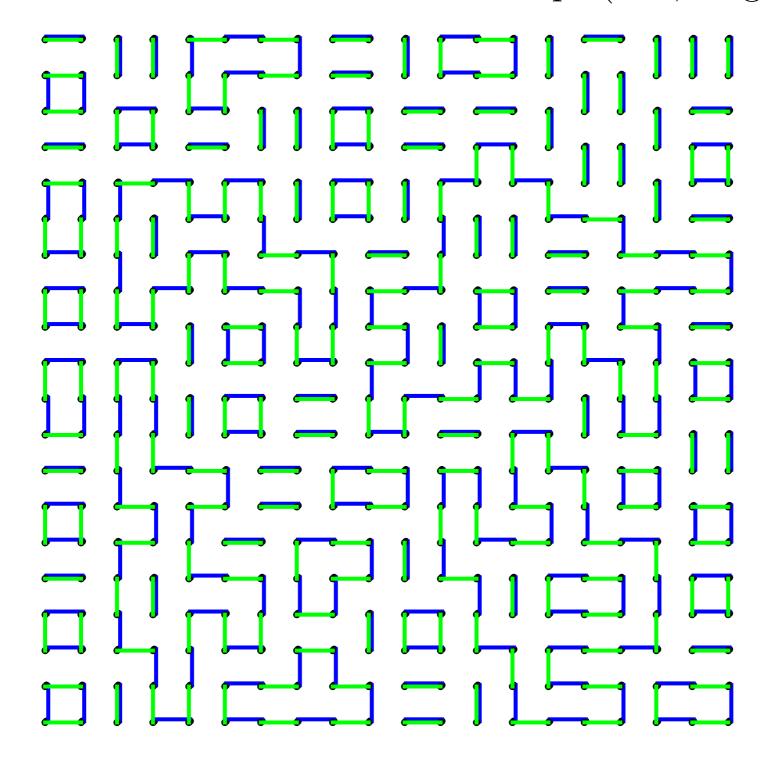


 $\Omega_2 = \text{set of double-dimer covers (forget colors)}$

Relating Ω_1 and Ω_2 :

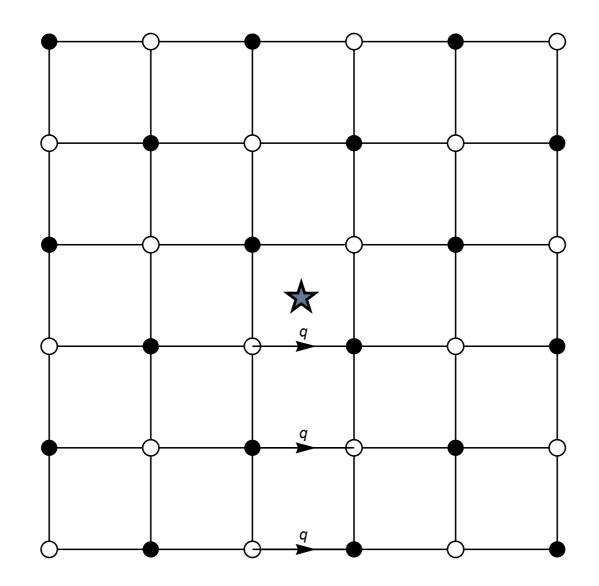
$$\sum_{m \in \Omega_2} 2^{\#\text{loops}} = |\Omega_1|^2$$

Problem 4. What is the distribution of loops (size, lengths, etc.) on \mathbb{Z}^2



$$Pr(\Box) = \frac{1}{32}$$
 $Pr(\Box, \Box) = \frac{(\pi - 1)^2}{2\pi^4}$

How to find the number of loops surrounding a point



 $Z = \det K(q) \det K(1/q)$ "double dimer partition function"

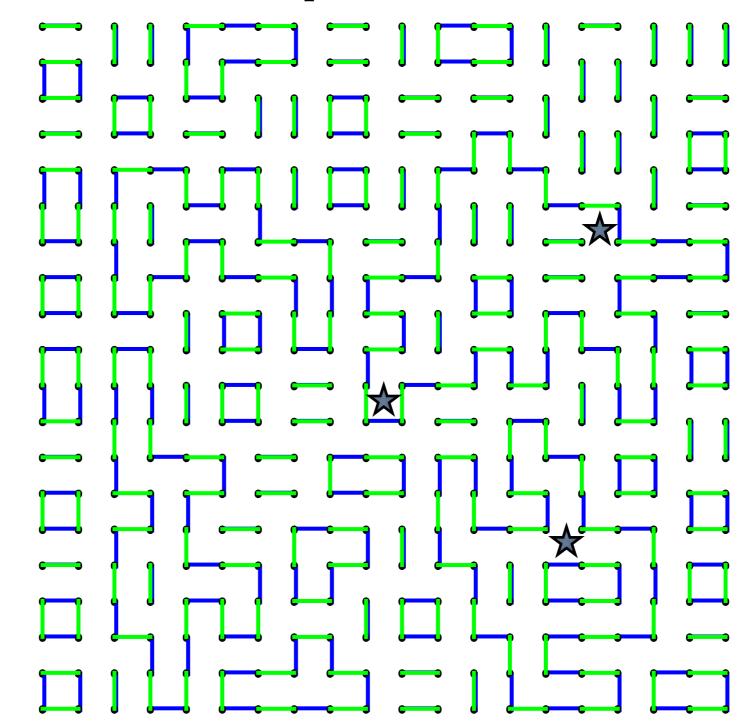
Each loop surrounding \bigstar contributes q + 1/q. (Other loops contribute 2).

$$Z(q) = \sum_{k>0} C_k (q + 1/q)^k$$

where C_k counts configurations with k loops surrounding

What about several points?

puncture some faces:



Problem 5. What is the probability that a loop in the double-dimer cover has a given homotopy class in Σ ?

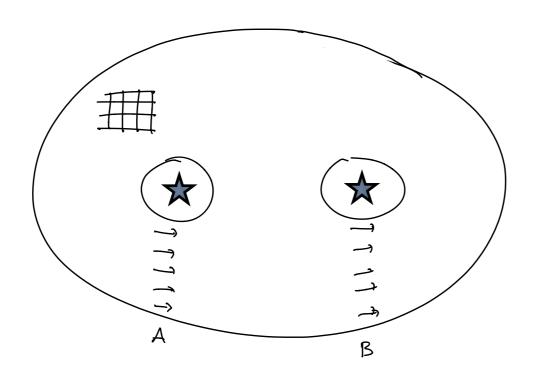
Thm [K.'14, Dubedat '19, Basok-Chelkak '20]: These probabilities are conformally invariant in the scaling limit.

This type of question can be answered with the help of an SL_2 -local system.

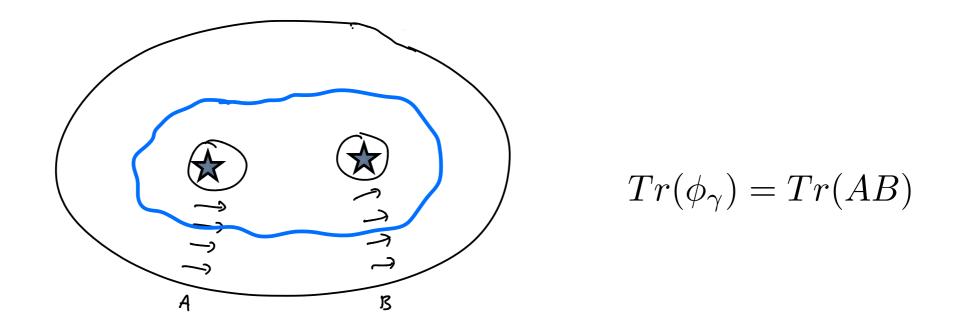
Let $\Phi = {\phi_e}_{e \in E}$ be an SL_2 -connection on G:

$$\mathbb{R}^2 \xrightarrow{\phi_{wb}} \mathbb{R}^2$$

For a loop γ , let ϕ_{γ} be the monodromy of Φ around γ .



We assume Φ is flat: trivial monodromy around each contractible loop.



For a loop γ , let ϕ_{γ} be the monodromy of Φ around γ .

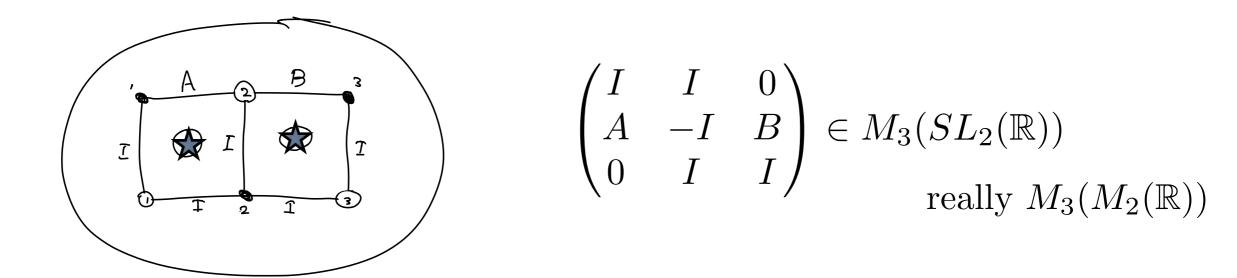
For any double-dimer configuration $m \in \Omega_2$ we define

$$Tr(m) = \prod_{\text{loops } \gamma \text{ of } m} Tr(\phi_{\gamma})$$

$$\text{in } SL_2, \text{ trace does not depend on orientation.}$$

The trace "detects" the homotopy type of the loops

We define a Kasteleyn matrix $K(\Phi)$ on G with an SL_2 -local system Φ .



Thm[K, 2016]
$$\det(\tilde{K}(\Phi)) = \sum_{m \in \Omega_2} Tr(m)$$
.

(remove "inner" parentheses)

For example: $\det \tilde{K}(I) = \sum_{m \in \Omega_2} 2^{\# \text{loops}}$

Thm[K, 2016]
$$\det(\tilde{K}(\Phi)) = \sum_{m \in \Omega_2} Tr(m)$$
.

(remove "inner" parentheses)

Rewrite this sum:
$$\det(\tilde{K}(\Phi)) = \sum_{\lambda \in \Lambda} C_{\lambda} \operatorname{Tr}(\lambda)$$

where λ runs over isotopy classes of <u>simple laminations</u>.

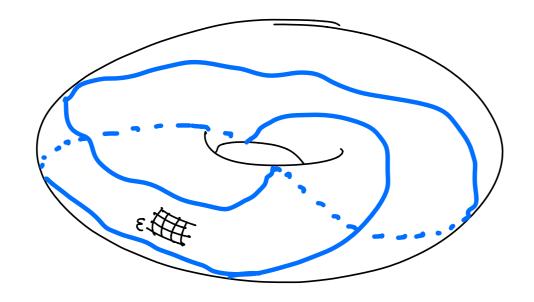
collections of disjoint simple closed curves

Thm[Fock-Goncharov '13]: Traces of simple laminations form a linear basis for regular functions on the character variety.

Cor: C_{λ} is determined by $K(\Phi)$.

Problem 6. How to extract C_{λ} from $K(\Phi)$?

Example: torus with a fine square grid and m a random double-dimer cover,



In the limit $\varepsilon \to 0$,

 $Pr(m \text{ has } k \text{ curves of homology class } (i,j)) \propto e^{-Q(ik,jk)}$

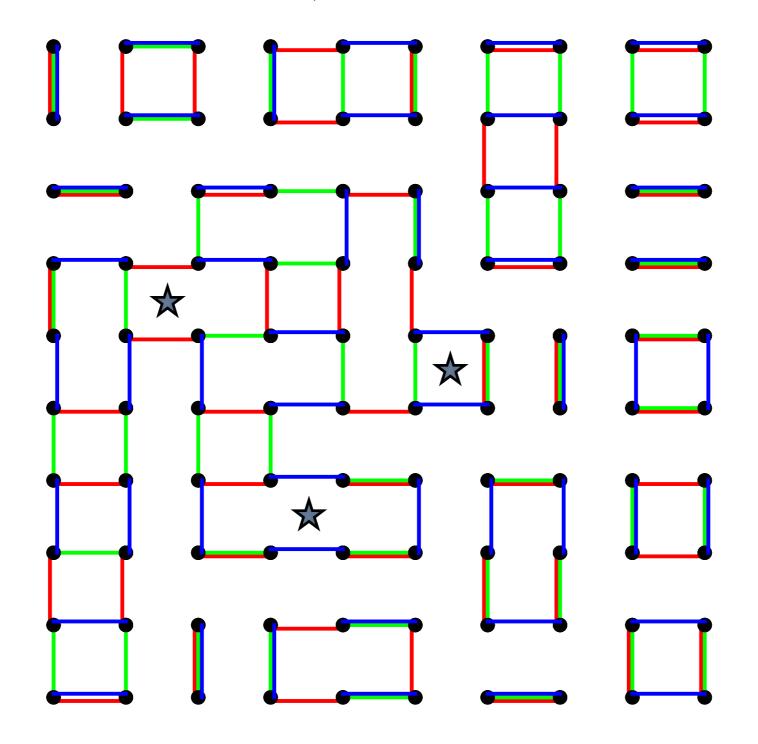
for a certain quadratic form Q.

[Boutillier-de Tilière '09]

The constant of proportionality is a theta function...

n-dimer model

Now, superpose n dimer covers (and forget the colors, but remember multiplicities)

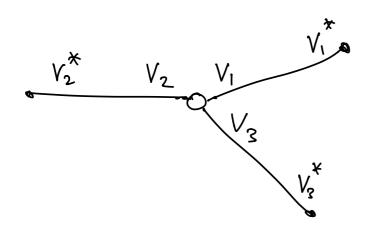


We get an "n-multiweb" or "n-fold dimer cover" $\Omega_n = \{n\text{-multiwebs}\}$

Thm:[Douglas,K,Shi] For a planar graph G,

$$\pm \det(\tilde{K}(\Phi)) = \sum_{m \in \Omega_n(G)} Tr(m).$$

Trace of a web (n=3)



 $V_i \cong \mathbb{R}^3$ with basis e_1, e_2, e_3

$$v_w \in V_1 \otimes V_2 \otimes V_3$$

$$v_w = \sum_{\sigma \in S_3} (-1)^{\sigma} e_{\sigma(1)}^1 \otimes e_{\sigma(2)}^2 \otimes e_{\sigma(3)}^3$$
 "codeterminant"

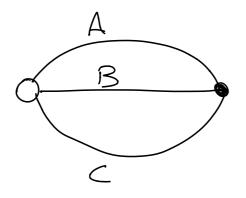
$$v_b \in V_1^* \otimes V_2^* \otimes V_3^*$$

$$v_b = \sum_{\sigma \in S_3} (-1)^{\sigma} f_{\sigma(1)}^1 \otimes f_{\sigma(2)}^2 \otimes f_{\sigma(3)}^3$$

invariant under SL_n -base change

$$Tr(m) = \left\langle \bigotimes_{w \in W} v_w \middle| \bigotimes_{e=wb} \phi_{wb} \middle| \bigotimes_{b \in B} v_b \right\rangle$$

3-web example



V basis e_r, e_g, e_b

$$v_{w} = e_{r}^{1} \otimes e_{g}^{2} \otimes e_{b}^{3} - e_{r}^{1} \otimes e_{b}^{2} \otimes e_{g}^{3} + \dots - e_{b}^{1} \otimes e_{g}^{2} \otimes e_{r}^{3}$$

$$\uparrow \\ A_{rr}B_{gg}C_{bb}$$

$$v_{b} = f_{r}^{1} \otimes f_{g}^{2} \otimes f_{b}^{3} - f_{r}^{1} \otimes f_{b}^{2} \otimes f_{g}^{3} + \dots - f_{b}^{1} \otimes f_{g}^{2} \otimes f_{r}^{3}$$

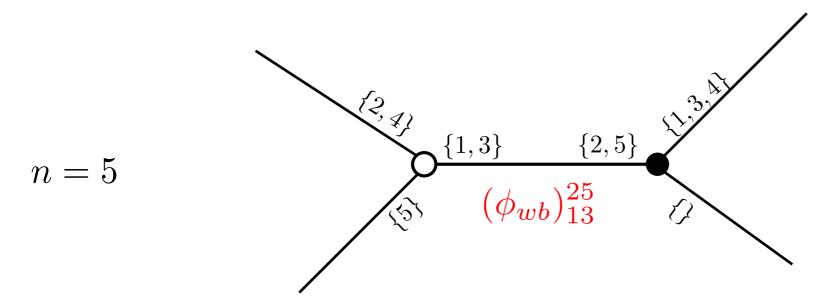
$$Tr(m) = A_{rr}B_{gg}C_{bb} + \dots + A_{bb}B_{gg}C_{rr}$$

 $Tr(m) = Tr(AB^{-1})Tr(CB^{-1}) - Tr(AB^{-1}CB^{-1})$
 $= [xyz] \det(xA + yB + zC)$

"Coloring" definition of trace

Assign colors in [n] to the half-edges at each vertex such that:

- An edge of multiplicity k gets two sets S_e, T_e of k colors.
- Sets at a vertex partition [n].



Assign to an edge wb with colors S_e, T_e the minor $(\phi_w)_{S_e}^{T_e}$.

Prop:
$$Tr(m) = \sum_{\text{colorings } c} (-1)^c \prod_e (\phi_e)_{S_e}^{T_e}$$

where $(-1)^c$ is the product of signatures at each vertex, depending on ordering of colors.

Thm: [Douglas, K, Shi] For a planar graph G,

$$\pm \det(\tilde{K}(\Phi)) = \sum_{m \in \Omega_n(G)} Tr(m).$$

Note: When n is odd, sign depends on an artificial ordering of vertices.

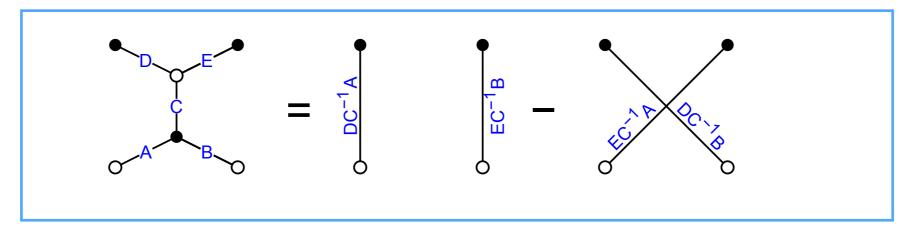
Note: When n is even, sign of trace depends on an artificial choice of linear ordering of edges at each vertex.

However typical multiwebs m are not reduced.

Thm[Sikora-Westbury] Traces of reduced (i.e. nonelliptic) webs form a basis for regular functions on the SL_3 -character variety.

reduced = no topologically trivial faces of degree < 6.

Web reductions (skein relations) n = 3:



Basic skein relation

$$= 3$$

$$= 0$$

$$= 0$$

$$+$$

Reductions preserving planarity (consequences of the basic skein relation)

For a 3-multiweb m on a graph on a surface with a flat SL_3 -connection

$$Tr(m) = \sum_{m'} Tr(m')$$

where the sum is over reduced (non-elliptic) webs m' in m. Even though the reduction is not canonical, the topological types of the m' are.

Consequently

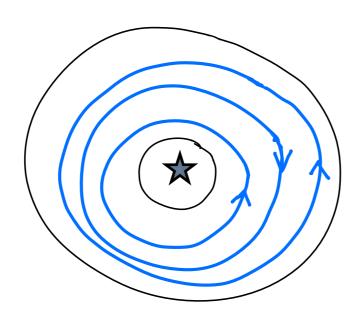
Thm: $\det(\tilde{K}(\Phi)) = \sum_{\lambda \in \Lambda_3} C_{\lambda} Tr(\lambda)$ where the C_{λ} are functions of $\det \tilde{K}(\Phi)$.

isotopy classes of reduced webs

Problem 7. How to extract C_{λ} ?

Problem 8 Is there a "canonical" set of reduced 3-webs associated to a given 3-web?

Example. On an annulus, every reduced 3-multiweb is a union of topologically nontrivial oriented loops



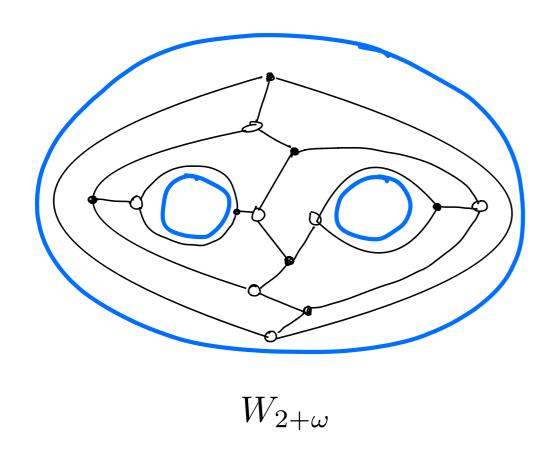
$$\det \tilde{K}(A) = \sum_{i,j\geq 0} C_{i,j} Tr(A)^i Tr(A^{-1})^j$$

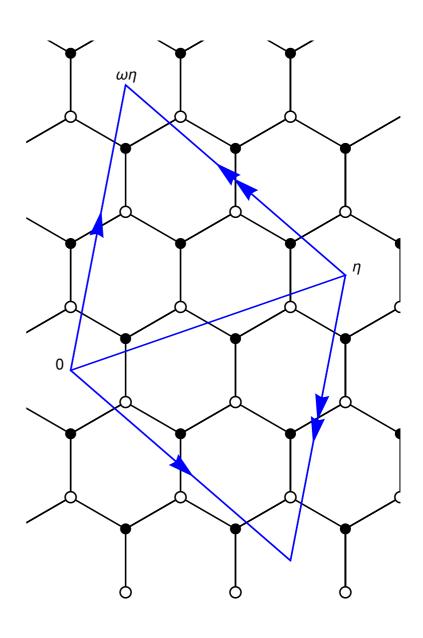
Prop: For an $n \times m$ grid on a cylinder, as $n, m \to \infty$ with $n/m \to \tau$,

$$\sum_{i,j\geq 0} C_{i,j} u^i v^j = C' \prod_{j=1}^{\infty} (1 + uq^j + vq^{2j} + q^{3j}) (1 + vq^j + uq^{2j} + q^{3j})$$
where $q = e^{-\pi n/m}$.

Example. On a pair of pants, every reduced 3-multiweb is a union of topologically nontrivial oriented loops and possibly one W_{η} component

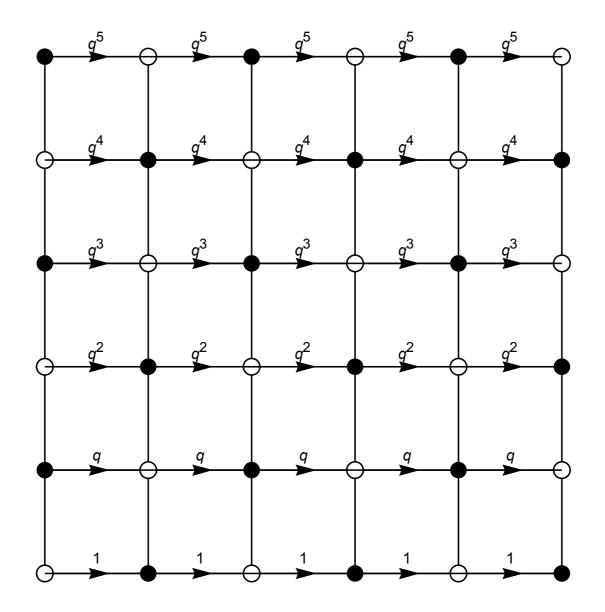
$$\eta = a + be^{\pi i/3}, \quad a, b \in \mathbb{Z}_+$$





THANK YOU

Magnetic dimer model



We put a line bundle with monodromy q around every face. Each loop contributes weight $q^A + q^{-A}$

$$\det K(q) \det K(1/q) = \sum_{\text{dd covers loops } \gamma} (q^{A(\gamma)} + q^{-A(\gamma)})$$