OPEN PROBLEMS IN DIMERS
AND BUNDLES

Richard Kenyon (Yale)



Problems

. “Dimer random walks”

. Weights <+ probabilities

. Double-dimer loops

. Double-dimer lamination coefficients

. Triple-dimer web coefficients



Dimer random walks

On a graph G, a (random) dimer cover is a (random) permutation of the vertices.

Problem 1. For an iid sequence of dimer covers, study the associated random
walks on permutations.
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For this graph, just record x coordinates of vertices, in Sj3.



Ex. n X n grid on torus

Each particle does SRW, coupled to avoid each other.



Edge weights and bundles
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Let v, be a positive real weight on each edge e.
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ecm

Observation: For bipartite graphs, we can think of v, as determining a connec-
tion on a line bundle.

Vector bundle: A copy V,, of a fixed vector space V' at each vertex u.

Connection: an isomorphism ¢, : V,, — V, for adjacent vertices, with ¢,, =
—1
uv a
R—m 3R

Line bundle: A vector bundle where V is one-dimensional. O———®




For a line bundle, ¢, is just multiplication by a (real) scalar.

For a bipartite graph with edge weights v., define a line bundle with connection
Owb = Ve On edges wb oriented from white to black.
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How is this helpful?

1. Gauge symmetry: changing basis at V,, corresponds to multiplying all edge
weights (of edge incident to v) by a constant. This does not change the proba-
bility measure.

2. Generalizes naturally to other groups, e.g. SL,(R), see below.

3. Connects the problem to geometry
[K.-Sheffield ’03], [Goncharov-K ’13], [Lam-K-Ramassamy-Russkikh ’19] [K.-’22]
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Problem 2. Study map from “face weights” { X} to edge probabilities { Pr(e)}.
(cycle basis)



What is the space of edge probabilities?

() = {Fractional dimer covers}

= functions in [0, 1]® summing to 1 at each vertex.

Thm: Q C [0,1]¥ is a polytope whose vertices are the dimer covers.

Note the vector of edge probabilities p'= (Pr(e))ccr lies in §2; it is in fact the
center of mass of the measure pu.



face weights edge probabilities

U:RY — O
V((Xy)rer) = (Pr(e))eer

14+ X X XX
(X1, X2) s (pq) = (22 2 + 4142

1+X2+X1X2’1+X2+X1X2)

Thm: If G is nondegenerate, ¥ is a diffeomorphism.

(Nondegenerate: each edge has 0 < Pr(e) < 1)
(Nondegenerate:  has interior in R¥".)



Problem 3. Is det VU subtraction free? Stable? What is the degree of ¥ as a

—

rational map? Are all roots of ¥(X) = p real?

Example:
Xo
- det VU =
1 I 1 (14 X5+ X1X5)3
Xl X2
_ l—p p+qg—1
U (p, q) =
(p, q) (p+q_1 - )
Example:

U has degree 2: Given p, there are two choices of {X¢} (only one of them
positive) such that ¥({X¢}) = p.
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(25 = set of double-dimer covers (forget colors)

Relating €); and {)s:

Z 2#loops _ ‘01’2

me(ls




Problem 4. What is the distribution of loops (size, lengths, etc.) on Z?
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How to find the number of loops surrounding a point
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Z =det K(q)det K(1/q) “double dimer partition function”
Each loop surrounding y¢ contributes ¢ + 1/q. (Other loops contribute 2).

Z(q) = Crlg+1/q)"

k>0
where ()} counts configurations with £ loops Surrounding*



What about several points?
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Problem 5. What is the probability that a loop in the double-dimer cover has
a given homotopy class in X7

Thm [K.’14, Dubedat ’19, Basok-Chelkak ’20]: These probabilities are
conformally invariant in the scaling limit.




This type of question can be answered with the help of an SLs-local system.

RQ gbwb g RQ

O ®

Let ® = {¢c}ecr be an SLy-connection on G-

For a loop 7, let ¢, be the monodromy of ® around 7.

composition of ¢’s around 7

We assume @ is flat: trivial monodromy around each contractible loop.



Tr(¢,) =Tr(AB)

For a loop 7, let ¢, be the monodromy of ® around 7.

For any double-dimer configuration m € {5 we define

Tr(m) = H Tr(o~)

loops v of m

in S Loy, trace does not
depend on orientation.

The trace “detects” the homotopy type of the loops



We define a Kasteleyn matrix K(®) on G with an SLy-local system .

I I 0
A —I B| e M3(SLy(R))
0 I I

really M3(Ms(R))

~

Thm[K, 2016] det(K{@)) = > meq, I7(m).

(remove “inner” parentheses)

For example: det f(([) =D e, 9#floops



~

Thm[K, 2016] det(K(®)) = ) _,,cq, Tr(m).
N

(remove “inner” parentheses)

Rewrite this sum: det(K(®)) = »  CyTr(A)
AEA

where A runs over isotopy classes of simple laminations.

N

collections of disjoint
simple closed curves

Thm |Fock-Goncharov "13]: Traces of simple laminations form a linear basis for
regular functions on the character variety.

Cor: C), is determined by K(®).

Problem 6. How to extract C' from K(®)?



Example: torus with a fine square grid and m a random double-dimer cover,

In the limit € — O,

Pr(m has k curves of homology class (7, )) o e~ @(*.k)

for a certain quadratic form Q).
[Boutillier-de Tiliere "09]

The constant of proportionality is a theta function...



n-dimer model

Now, superpose n dimer covers (and forget the colors, but remember multiplicities)
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We get an “n-multiweb” or “n-fold dimer cover”
(2, = {n-multiwebs}



Thm:|[Douglas,K,Shi| For a planar graph G,
+det(K(®))= »  Tr(m).

meQ, (G)




Trace of a web (n = 3)

Vi 3 . .
Vo V. VY V: = R° with basis e, eq, e3
VZ
v
Uy € V1 ® Vo ® V3 VU = Z (_1)0‘9(1;(1) X 63(2) & 63(3)
occS
=0 “codeterminant”
v EVIQVy @ VY Vb = Z (_1)Jf;(1) ® fg(z) & fg(?))
oES3

\

invariant under
SL,-base change

Tr(m) = < R vw| R qsw,,) ®Ub>

weWw e=wb beB



A

3-web example @ V' basis e,, eq4, €

-

1 2 3 1 2 3 1 2 3
Uy =€, e, Qe —€. e, e, +-+—¢€, e, e,
Arngngb

w=fofjoff - fi+ - —feffef

Tr(m) — Arngngb + -+ AbnggCrr
Tr(m) =Tr(AB~)Tr(CB™') — Tr(AB~'CB™)

= |xyz]det(zA + yB + zC)



“Coloring” definition of trace

Assign colors in [n] to the half-edges at each vertex such that:

e An edge of multiplicity k gets two sets S., 1. of k colors.

e Sets at a vertex partition [n].

{1,3} {2,5}

&5\3\\ (¢wb)%g

S
|
o

Assign to an edge wb with colors S,, T, the minor (¢w)gz

Prop: Trim)= Y (=] ](¢)s

colorings ¢ e
where (—1)¢ is the product of signatures at each vertex, depending on ordering

of colors.



Thm:|Douglas,K,Shi| For a planar graph G,
+det(K(®))= »  Tr(m).

meQ, (G)

Note: When n is odd, sign depends on an artificial ordering of vertices.

Note: When n is even, sign of trace depends on an artificial choice of linear
ordering of edges at each vertex.

However typical multiwebs m are not reduced.

Thm|[Sikora-Westbury| Traces of reduced (i.e. nonelliptic) webs form a basis
for regular functions on the SLj3-character variety.

reduced = no topologically trivial faces of degree < 6.



Web reductions (skein relations) n = 3:
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Reductions preserving planarity (consequences of the basic skein relation)



For a 3-multiweb m on a graph on a surface with a flat S Ls-connection
Tr(m) = ZT’P(m')

where the sum is over reduced (non-elliptic) webs m’ in m. Even though the
reduction is not canonical, the topological types of the m' are.

Consequently

Thm: det(K(®)) = Z C\Tr()\) where the Cy are functions of det K (®).
AEA3

AN

isotopy classes of reduced webs

Problem 7. How to extract C\?

Problem 8 Is there a “canonical” set of reduced 3-webs associated to a given
3-web?



Example. On an annulus, every reduced 3-multiweb is a union of topologically

nontrivial oriented loops

det K (A Z C; ;Tr(A)Tr(A")

2,7 >0

Prop: For an n x m grid on a cylinder, as n,m — oo with n/m — 7,

Z C; ju'v? = (' H(l +uq’ +vq* + ¢ (1 +vg +ug® + ¢*7)
,j>0 j=1
) w=Tr(A),v="Tr(A™")

where ¢ = €



Example. On a pair of pants, every reduced 3-multiweb is a union of topologi-
cally nontrivial oriented loops and possibly one W, component

n:a—l—bem/?’, a,be 7,




THANK YOU



Magnetic dimer model
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We put a line bundle with monodromy ¢ around every face.

Each loop contributes weight ¢* 4+ ¢=4

det K(q)det K(1/q) = Z H (¢ 4 g~ A0

dd covers loops ~



