Midterm \#3, 4/25
 Math 157 (Calculus II), Spring 2024

Each problem is worth 10 points, for a total of 50 points. You have 50 minutes to do the exam. Remember to show your work on all problems!

1. For each of the following sequence limits, state the value of the limit or state that it diverges. Explain your answer.
(a) $\lim _{n \rightarrow \infty} \frac{5 n^{2}-2 n+6}{3 n^{2}+2 n+1}$
(b) $\lim _{n \rightarrow \infty} \cos \left(\frac{2 \pi}{n}\right)$
(c) $\lim _{n \rightarrow \infty}(-1)^{n} \cdot \frac{n}{n+1}$
(d) $\lim _{n \rightarrow \infty} \sqrt{n}$
2. For each of the following series, decide (with explanation) whether it converges or diverges.
(a) $\sum_{n=1}^{\infty} \frac{n}{5 n-1}$
(Hint: check the limit of the terms.)
(b) $\sum_{n=1}^{\infty} \frac{3}{5 n-1}$
(Hint: compare to a series you know.)
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n+1}$
(Hint: it is an alternating series.)
(d) $\sum_{n=1}^{\infty} \frac{2^{n}+n}{4^{n}-n}$
(Hint: look at the ratio of successive terms.)
3. Consider the series $s=\sum_{n=1}^{\infty} \frac{1}{(2 n+1)^{2}}$. Let $s_{n}=\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots+\frac{1}{(2 n+1)^{2}}$ be its nth partial sum.
(a) Compute the second partial sum s_{2} as an estimate for the true value s of the series. (Do not worry about simplifying your answer.)
(b) Let $R_{2}=s-s_{2}$ be the corresponding remainder, i.e., the error of your estimate from part (a). Give an upper bound for R_{2}. (Hint: use an improper integral as the bound.)
4. Consider the function $f(x)=e^{-2 x}$.
(a) Express this function as a power series centered at zero: $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$.
(b) Determine the radius of convergence R of the power series you found in part (a).
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice-differentiable function satisfying $f(0)=3, f^{\prime}(0)=2$, and $f^{\prime \prime}(0)=1$.
(a) Write the degree two Taylor polynomial $T_{2}(x)$, centered at $x=0$, for $f(x)$.
(b) Use your answer in part (a) to estimate the value of $f(2)$. (You do not need to give any bounds on the error of your estimate.)
