Midterm #1 Study Guide Math 181 (Discrete Structures), Spring 2024

- 1. Sets $[\S1.1]$
 - (a) sets of numbers (integers \mathbb{Z} and real numbers \mathbb{R}), set-builder notation, subsets ($A \subseteq B$)
 - (b) operations of union $(A \cup B)$, intersection $(A \cap B)$, difference $(A \setminus B)$, complement (A^c)
 - (c) representing sets via Venn diagrams
 - (d) ordered pairs (x, y) and the (Cartesian) product $X \times Y$ of two sets X and Y
- 2. Logical propositions [§1.2, 1.3]
 - (a) operations of "or" $(p \lor q)$, "and" $(p \land q)$, "not" $(\neg p)$
 - (b) truth tables for compound propositions
 - (c) conditional a.k.a. implication a.k.a. "if... then..." $(p \rightarrow q)$
 - (d) biconditionals $(p \leftrightarrow q)$ and logical equivalence (\equiv)
 - (e) converse $q \to p$ and contrapositive $\neg q \to \neg p$ of an implication $p \to q$ (contrapositive is logically equivalent to original implication; converse is not!)
- 3. Logical arguments [§1.4]
 - (a) converting an argument from words to symbolic form and vice-versa
 - (b) proving validity using truth tables
 - (c) proving validity using the rules of inference and logical equivalences
 - (d) common forms of invalid arguments a.k.a. fallacies
- 4. Quantifiers [§1.5, 1.6]
 - (a) propositional formulas (P(x)) and domains of discourse (D)
 - (b) universal $(\forall x P(x))$ and existential $(\exists x P(x))$ quantifiers
 - (c) DeMorgan's Laws: $\neg(\forall x \ P(x)) \equiv \exists x \ \neg P(x) \text{ and } \neg(\exists x \ P(x)) \equiv \forall x \ \neg P(x)$
 - (d) nested quantifiers and order of quantifiers $(\forall x \exists y \ P(x, y) \not\equiv \exists y \forall x \ P(x, y))$
- 5. Proofs $[\S2.1]$
 - (a) two basic mathematical systems: the theory of integers; the theory of sets
 - (b) direct proofs for theorems of form " $\forall x_1, \ldots, x_n$ if $P(x_1, \ldots, x_n)$ then $Q(x_1, \ldots, x_n)$ "
 - (c) counterexamples to universally quantified statements