Howard Math 273, HW# 2,

Fall 2023; Instructor: Sam Hopkins; Due: Friday, November 3rd

- 1. Recall the Stirling numbers of the 2nd kind are S(n,k) := # set partitions of $\{1, 2, ..., n\}$ into k (non-empty) blocks. We saw $F_k(x) := \sum_{n\geq 0} S(n,k)x^n$ satisfies $F_k(x) = \frac{x^k}{(1-x)(1-2x)\cdots(1-kx)}$ for any $k \geq 1$. Find the partial fraction decomposition of $F_k(x)$, i.e., find the numbers $a_j \in \mathbb{Q}$ for which $F_k(x) = a_0 + \frac{a_1}{(1-x)} + \frac{a_2}{(1-2x)} + \cdots + \frac{a_k}{(1-kx)}$. Conclude that $S(n,k) = \sum_{j=0}^k a_j \cdot j^n$. **Hint**: Clear denominators, and then plug in $x = \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{k}$ and finally x = 0.
- 2. (Stanley, EC1, #2.9) Another way to find the a_j from the previous problem is using the Principle of Inclusion-Exclusion (P.I.E.), as this problem will show. Let $\widehat{S}(n,k) := k! \cdot S(n,k)$.
 - (a) Explain why $\widehat{S}(n,k)$ is the number of ways to place n labelled balls into k labelled boxes so that all boxes are non-empty.
 - (b) How many ways are there to place n labelled balls into k labelled boxes so that the boxes labeled i_1, i_2, \ldots, i_j are empty (but the other boxes may be empty or not)?
 - (c) Use parts (a), (b), and the P.I.E. to conclude that $\widehat{S}(n,k) = \sum_{j=0}^{k} (-1)^{j} {k \choose j} (k-j)^{n}$.
- 3. (Stanley, EC1, #2.25(a)) Let $f_i(m, n)$ be the number of $m \times n$ matrices of 0's and 1's, with a total of *i* 1's, and with at least one 1 in each row and column. Use the P.I.E. to show that

$$\sum_{i\geq 0} f_i(m,n)t^i = \sum_{k=0}^n (-1)^k \binom{n}{k} ((1+t)^{n-k} - 1)^m$$

4. (Stanley, EC1, #2.25(b)) With $f_i(m, n)$ as in the previous problem, show that

$$\sum_{m,n\geq 0} \left(\sum_{i\geq 0} f_i(m,n) t^i \right) \frac{x^m}{m!} \frac{y^n}{n!} = e^{-x-y} \cdot \sum_{m,n\geq 0} (1+t)^{mn} \frac{x^m}{m!} \frac{y^n}{n!}.$$

Hint: You can start with the formula from the previous problem, and then do some algebraic manipulations. Alternatively, you can use the theory of exponential generating functions.

- 5. The q-binomial coefficient satisfies $\begin{bmatrix}n\\k\end{bmatrix}_q = \sum_{w \in \mathcal{W}_{n,k}} q^{\mathrm{inv}(w)}$, where $\mathcal{W}_{n,k}$ is the set of words that are rearrangements of (n-k) 0's and k 1's, and $\mathrm{inv}(w)$ is the number of inversions of w. **Suppose** n = 2m is even. Prove that $\begin{bmatrix}n\\k\end{bmatrix}_{q:=-1}$ (the evaluation of the q-binomial at q = -1) is equal to $\#\mathcal{P}_{n,k}$, where $\mathcal{P}_{n,k}$ is the subset of words $w = w_1w_2\dots w_n \in \mathcal{W}_{n,k}$ that are palindromes, i.e., which satisfy $w_i = w_{n+1-i}$ for all *i*. Do this by defining a **sign-reversing involution**. That is, define an involution $\tau \colon \mathcal{W}_{n,k} \to \mathcal{W}_{n,k}$ satisfying:
 - $\operatorname{inv}(w)$ and $\operatorname{inv}(\tau(w))$ have opposite parity for all $w \in \mathcal{W}_{n,k}$ with $\tau(w) \neq w$;
 - $\operatorname{inv}(w)$ is even for all $w \in \mathcal{W}_{n,k}$ with $\tau(w) = w$;
 - $#\{w \in \mathcal{W}_{n,k}: \tau(w) = w\} = #\mathcal{P}_{n,k}.$