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 1973] FINITE GROUPS ACTING ON SETS WITH APPLICATIONS 137

 DEFINITION. A group, (G,o) acts on a set S if each g in G is a.function.fromn S to
 S and

 (a) (g o 12) (s) = g(h(s))for all g, h in G, s in S

 (b) I(s) = s for all s in S, where I is the identity of G.

 Exercise 1-1. If G acts on S each g in G is a permutation of S.

 DEFINITION. IfS is a set, Sym(S) is the g7oUp of allpermutations of S and Alt(S)

 is the set of all even permutations. Sym(S) is called the symmetric group on S and

 Alt(S) the alternating group on S.

 Except for informational items enclosed in parentheses, simple affirmative

 statements in the exercises are to be proved.

 Exercise 1-2 and definition,. If G acts on a set S then there is a homomorphism

 from G into Sym (S). This homomorphism will always be denoted 0 and will be called

 the homomorphism of G acting on S or the action homomorphism.

 Exercise 1-3 and definition. If t E S then G, {g I g E G, g(t) = t} is called the
 stability subgroup of t. Show that Gt is actually a subgroup of G.

 DEFINITION. If t E S wher-e G acts on S, then the orbit of t under G is the set of all
 g(t) where g ranges through the elements of G. This orbit is denoted OG(t) or 0(t).

 Exercise 1-4. If S = {1, 2,3, 4} and G is Sym(S) (in such cases we will denote G

 as Sym(4)) then find G4 and (9(4).

 Exercise 1-5. If S = {1,2,3,4,5,6,73 and G is the group of permutations I,

 (1234) (56), (13) (24), (1432) (56) then find G,,G5,G7, 1,,O5, and (97.

 Exercise 1-6. Letf1(z) = z,f2(z) =-11/(1 + z),f3(z) -(1 + z)/z. Show that

 (G,o) is a group where G = {fJ,f2,f3} and o is compositions of functions. Then show
 that G acts on the complex plane with 0 and - 1 deleted. Find G1, Gi, and G. where

 (2iri/3)

 We still need an example of a group acting on a set which is not a permutation

 group. Such examples will be plentiful in Sections 2 and 5 but for now we provide

 the following:

 Exercise 1-7. Let G = {(( )b ac F 0 be the group of nonsingular upper

 triangular matrices with real coefficients. Iff = ( b then let f(x) = (ax + b)/c.

 Show that this defines an action of G on the real line, R. What is the kernel of the

 action homomorphism? What are Go and C(0)?

 Exercise 1-8. If G acts on S then s E ((t) if and only if C(s) = C(t).

 Exercise 1-9. If G acts on S we say s t if s = g(t) for some g E G where s and t
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 138 MATHEMATICS MAGAZINE [May-June

 are in S. Show that - is an equivalence relation and that the equivalence classes
 of are the orbits of G.

 Perhaps the next exercise shows the origin of the term orbit.

 Exercise 1-10. Let G be the group of all 2 x 2 matrices of the form

 IcosO0sinO _ cosO0sinO0-ysn0
 -sinO cos 0 iff sin 0 cos 0 then let f(x, y) = (x cos 0-y sin 0,

 x sin 0 + y cos 0). Thusf rotates the point (x, y) through an angle 0 around the origin.

 Show that G is a group and that G acts on R2. What are G(1,0), G(0 0), (9(1,0), ((0,0)?
 Describe the orbits of G. These obviously partition 1R2 which we knew a priori by
 Exercise 1-8.

 Exercise 1-11. If G acts on S and g(s) = t then G, = g-IGg. In particular G,
 and G, are isomorphic.

 We now assume G is finite and we can use the partition to do counting in S.

 Exercise 1-12. The Basic ,Theorem. If a finite group G acts on a set S then

 G|-| G, I | 0(t)I for any t in S. (Here I A j denotes the cardinality of the set A.)

 Exercise 1-13. Take a cube and label all its vertices, say, as follows.

 4

 1;3

 5 ~~~~7

 6

 Any rotation of the cube into itself can be represented by the permutation it affects
 on the vertices. x = (1234) (5678), ,B = (1265) (4378), y = (12) (46) (35) (78) and

 = (254) (683) are all rotations of the cube. Show 0(1) = {1,2, ...,8} and RI
 = {I, C, X2} and thus that j R j = 24 where R is the group of all rotations of the cube
 into itself.

 2. If Gt = G or equivalently g(t) t for all g in G then t is a fixed point of the

 action of G on S. An oft-occurring situation which guarantees fixed points is set up
 in the next few exercises.

 Exercise 2-1 and definition. If P is a finite p-group acting on set S then every

 orbit has length 1,p,p2, ..., Pj. The length of the orbit ((t) is just I 0(t)j.

 Exercise 2-2 (Basic p-group Theorem). If P is a finite p-group acting on a set S

 with p4' I S I then P has at least onefixed point.

 Exercise 2-3. If G is a group of order 55 acting on a set, S, of order 18, show

 that G must have a fixed point (in fact at least 2).
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 1973] FINITE GROUPS ACTING ON SETS WITH APPLICATIONS 139

 Exercise 2-4. Returning to the rotation of a cube discussed in Exercise 1-13 we

 have a group, R, of order 24. Any element of order 3 generates a cyclic group of order

 3. Conversely any subgroup of order 3 is cyclic and thus generated by an element.

 Show that any element of order 3 in R has 2 fixed points. Geometrically these points

 must be diametric. How many elements of order 3 are there in R?

 We now set up another action. Let G be a group and also let S = G. We let G act

 on G by conjugation. That is, if g is in G thenfg(x) = gxg'-I for all x in G.

 fgfjl(x) =fg(hxh-1) = g(hxh-')g-' =ghx(gh)-' =fg1,(x), and also fi(x) = IxI-1
 - x, so indeed this is an action. If g is an element of G, the futnctiOnlfg is called an
 inner automorphism.

 Exercise 2-5. Show that the kerinel of the action of G acting on G by conjuga-

 tion is Z(G), the center of G.

 Exercise 2-6. If H is a subgroup of G let H act on the set G by conjugation.

 Show that g is a fixed point of H if and only if g is in CG(H), the centralizer of H

 in G.

 This case of G acting on G by conjugation is of sufficient interest that a sp-cial

 terminology has developed. An orbit is called a conjugate class and the stabilizer of

 a is just the centralizer CG(a) of a in G. By Exercise 8 the conjugate classes partition

 G. This action of G on G by conjugation in general does not make G into a perinuta-

 tion group on itself.

 Exercise 2-7 (The class equation). Let the conjugate classes of the finite group

 G be Cl(al), Cl(a2), ",Cl(aJ), Cl(a,n+1), .. Cl(ak) with jCl(a)I = Cl(a2)J=
 = | Cl(a,,,) 1 and Cl(ai)I > 1 Vi > in. Then

 k k

 jGj = Q |Cl(ai) = | Z(G)j + Y | Cl(aD)
 i== iII +

 -jZ(G)j? Y, 22 Y
 l l i=m+t |ICG(ai)l i=1 I CG(ai) I

 Exercise 2-8. Let the finite p-group P act on the set P# of all nonidentity

 elements of P by conjugation. Since p4'1 P* I show that I Z(P)| > 1.

 Exercise 2-9. Every group of order p2 (p a prime) is abelian.

 Exercise 2-10. If N is a normal subgroup of a finite p-group then show that P

 acts on N by conjugation. Also show that pt I N Sj, that P has fixed points in N#,
 and that I N rl Z(P) J > 1. (Taking N = P we obtain Exercise. 2.8 as a special case.)

 Exercise 2-11. Find all finite groups G with exactly 1, 2 or 3 conjugate classes.

 3. In this section we discuss the Polya-Burnside Theorem and a few applications

 of it in some counting problems. The Polya-Burnside Theorem appears in Burnside

 [2] page 189. Polya realized its applicability and extended its uses in [10].

 Exercise 3-1 (Polya-Burnside). If a finite group G acts on a finite set S and X(g)
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 140 MATHEMATICS MAGAZINE [May-June

 is the number of elements in S fixed by g then (I /| G |) 1g:EG Z(g) = the number of
 orbits of G acting on S. Hint: count the number of pairs (g,s) where g(s) = s two

 different ways and compare.

 Using this theorem we now can consider a counting problem. Let us assume we

 have wires set up as a regular tetrahedron and at each of the six edges we can attach

 our choice of a 100-ohm resistor, a 75 watt light bulb, or a capacitor. In our supplies

 are at least 6 of each of these components. We want to know how many essentially

 different contraptions we can make if we allow rotations of the tetrahedrons. First

 we take care of two preliminaries.

 Preliminary 1. It is straightforward to count the different (ignoring rotations)

 contraptions available. We have 3 choices available at each of six locations so we

 have a set, S, of 36 = 729 possible contraptions.

 A

 B -

 C

 Preliminary 2. What does the group of rotations of a regular tetrahedron look
 like? If we label the vertices of a tetrahedron we find that the elements are I, (ABC),
 (ACB), (ABD), (ADB), (ACD), (ADC), (BCD), (BDC), (AB) (CD), (AC) (BD), and
 (AD) (BC). Thus there is one element of order 1, 8 elements of order 3 each fixing one

 vertex and 3 elements of order 2 each with no fixed vertices. Let us call this group G.
 Returning now to our problem we find that we have a count from Preliminary 1

 but it is too high. For instance, there are 6 different contraptions with 5 resistors and
 1 light bulb but these are not essentially different if we allow rotations. In fact, these
 six elements of S form just one orbit under G. Upon further thought each orbit under
 G gives us just one "essentially different" contraption so the Polya-Burnside Theorem
 is exactly what is needed here.

 We now need only to compute the Z(g) for each g in G. x(I) = 36 since the identity
 fixes every contraption in S. If g is an element of order 3, (a 120? rotation about an

 axis through one vertex, V, and the center of the opposite triangle) then g fixes
 only elements of the form below where r and s are any of the 3 choices. Thus

 Z(g) = 32

 If h has order 2 and thus interchanges two pairs of vertices we can assume h = (EF)
 (GH). Then we have an arbitrary choice of 3 for the edges EF and HG. Side EG is taken
 to FH (and conversely) so we have a free choice for EG but then FH must be the same

 choice. Similarly we have a free choice for EH but then no choice for FG. Thus
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 1973] FINITE GROUPS ACTING ON SETS WITH APPLICATIONS 141

 E
 v

 r F 8r

 G

 x(h) 34 here. Putting this all together we obtain:

 Answer = number of orbits = lGl e G A

 15 (X(I) + 8x(g) + 3Z(h)) = 1(36+ 8 32 + 3 34)

 = 87.

 Exercise 3-2. Redo this example with n choices available at each side instead

 of 3. This should incidentally give you a somewhat elaborate proof that (1/12).

 (n6 + 8n2 + 3n4) is an integer for all positive integers n.

 Exercise 3-3. Analyze the dihedral group of order 12 (that is, the group of

 symmetries of a regular hexagon), as a permutation group on its 6 vertices. Analyze

 here means first find the number of elements of each order, then subdivide these

 either as to number of fixed points or geometrically.

 Exercise 3-4. If at each carbon atom in a benzene molecule either a - NH3, a

 COOH, or a - OH radical can be attached, how many different compounds are

 possible?

 Exercise 3-5. If each side of a regular hexagon can be painted red, yellow, black,

 or green, how many essentially different designs are possible allowing all symmetries

 of a regular hexagon?

 Exercise 3-6. If each side and both ends of a regular triangular prism can be

 painted one of 6 colors, how many essentially different combinations are possible?

 Exercise 3-7. If a tape contains 10 digits each either 0 or 1 but the tape can be

 read indiscriminately from either end, then how many essentially different messages

 can be recorded on this tape?

 For further developments of this material see Polya [10], Liu [8], or Harary [6].
 This theorem can be extended to give a count of the number of graphs with n vertices.

 See Harary's book for this and for various other important counting problems in

 combinatorics. His book also contains an extensive list of unsolved counting problems.

 There are some other results related to the Polya counting theorem.
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 142 MATHEMATICS MAGAZINE [May-June

 DEFINITION. If a group G acts on a set S and the only orbit of this action is S

 itself then G is said to be transitive. Iffor every two pairs of points {S1'S2} and

 {t1,t2} in S there is a g in G such that g(s1) = t1 and g(S2)= t2 then G is doubly

 transitive.

 Exercise 3-8. If G is transitive on S then IS I I GI.

 Exercise 3-9. If G is transitive on S then G is doubly transitive if and only if

 G, is transitive on S - {t}.

 Exercise 3-10. If G is transitive on S then

 E' (Z(g)) 2 = tI G
 g sG

 where Z(g) is the number of fixed points of g and t is the number of orbits of G,.
 In particular if G is doubly transitive

 F, (Z(g)) 2= 21 GI .
 geG

 The following exercise is related.

 Exercise 3-11*.

 z (p2(g))2 = o| GI
 geG

 where p2(g) = I {xj x E G, x2 = g} I and a is the number of conjugate classes, C, in G
 such that if x is in C so is x-1.

 Exercise 3-12** (unsolved). Generalize 3-11 for other numbers than 2. (See

 Research Problems, March 1971, AMERICAN MATHEMATICAL MONTHLY.)

 4. In this section we consider the group GL(2, F) = G of all 2 x 2 nonsingular

 matrices acting on various sets. Let the matrix (ab) take the point (x, y) to

 (X, Y) (Cd) = (ax + cy, bx + dy).

 We can take S to be points in F x F, lines in F x F through (0, 0), rays emanating

 from the origin, all subsets of F x F, all finite subsets of F x F, or a variety of other

 sets.

 Exercise 4-1. Let G = GL(2, F) act on the lines through (0,0) in F2 as above

 and let M be an element of G. Then a line, 1, is fixed by M if and only if every point

 on 1 is an eigenvector of M.

 Exercise 4-2. Find the subgroup of GL(2, Ri that takes all points on the hyperbola

 xy = 1 to other points on the same hyperbola. Prove that this is a maximal subgroup

 of SL*(2, R), the matrices of determinant + 1.
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 1973] FINITE GROUPS ACTING ON SETS WITH APPLICATIONS 143

 Let 7p denote the field of p elements where p is a prime. Let S = 7p x Z. and let
 St =Z xzp - (0,O).

 Exercise 4-3. If P is a p-subgroup of GL(2, Zp) then P has a fixed point in S'.
 Therefore, there is a nonzero vector v in Zp x ZP such that v is an eigenvector with
 eigenvalue 1 for all the matrices in P. (Show this is also true if P is a p-subgroup of

 GL(n, Zp).)

 This last result can be generalized from 7p to all fields of characteristic p.
 See Gorenstein [5] page 31.

 Exercise 4-4. If G = SL(n, F) denotes the group of all n x n matrices with

 determinant 1 and S is the set of all lines through the origin of F(n) then show that G
 acts on S. Show also that (9(l) = S for any line 1 in S. Show that the kernel of

 the action homomorphism is Z(G). The group G /Z(G) is thus a permutation group

 on S and is called PSL(n, F), the projective special linear group over F. (Except

 when F has order 2 or 3, PSL(n, F) is a simple group.)

 Exercise 4-5. Calculate the orders of GL(2, Zp), SL(2, Zp), Z(SL(2, Zp)) and
 PSL(2, Zp). Do the same for n instead of 2.

 DEFINITION. A finite group G is a Frobenius Group if N and H are proper sub-

 groups of G such that NAG, NH = G, and any h e H* induces a fixed point free

 automorphism of n. That is h-'nh=n with heH, neN implies h=e or n=e.

 Frobenius groups are important in the theory of finite groups, division rings,

 projective geometry, and permutation groups. They have been classified quite

 thoroughly (see Passman [9]). It is known that N is always nilpotent and that H is

 solvable or involves SL(2, Z5), N is called the kernel and H the complement. The
 following example is an interesting piece of folklore.

 Exercise 4-6. Show that SL(2, Z5) acts on Z,, x Z,, in a fixed point free manner,
 so that the semidirect product of Z1l x Z1l with SL(2, Z5) is the smallest Frobenius
 group whose complement is not solvable. You may assume SL(2, 5) is a subgroup of

 SL(2, Z I) which follows from some computations with generators and relations (see
 Huppert [7]). This result will follow if we can show every element of SL(2, Z) of

 order 2, 3, or 5 is fixed point free which follows from the basic p-group theorem

 applied to the vectors in Z l x 7Z . Since I (Z x Z 1 )* j = 120 = j SL(2, 5)I| this
 must be the smallest such example.

 5. Many of the applications of groups acting on sets are in group theory itself.

 These come about by picking for the set S various sets of subsets of G. For instance

 back in Section 2 we let S = G or G - {1} and then let G act by conjugation.

 Exercise 5-1. The Strong Cayley Theorem. Let H be a subgroup of G and let

 S = {H,Hx,Hy, ...} be the set of all right cosets of S. Let G act on S by right mul-

This content downloaded from 
������������138.238.254.205 on Mon, 24 Jan 2022 15:58:54 UTC������������ 

All use subject to https://about.jstor.org/terms



 144 MATHEMATICS MAGAZINE [May-June

 tiplication so that Hx 9-? Hxg. Verify that this is an action and that the kernel of

 the action homomorphisn is 11= nxsG x-'Hx.

 Exercise 5-2. If H is a subgroup of G show that H = nXG G x'- Hx is the largest
 normal subgroup contained in H.

 If H is of index n in G and 0 is the action described above, we note that 0 gives

 a homomorphism from G into Sym(n).

 Exercise 5-3. If H = {I}, the identity subgroup, show that Cayley's Theorem

 results.

 Using the Strong Cayley Theorem, we can obtain direct results saying that exist-

 ence of a large subgroup guarantees the existence of a reasonably large normal sub-

 group. Conversely if normal subgroups are sparse so are large subgroups.

 Exercise 5-4. If a group G has a subgroup H of finite index greater than 1, then

 G also has a normal subgroup of finite index greater than 1.

 Exercise 5-5. If a group G has order 10,000, then G cannot be simple. [The 1st

 Sylow Theorem can be used here.]

 Exercise 5-6. Using the fact that Alt(n) is simple for n > 5 show that Alt(5) has

 no subgroups of order 15, 20 or 30. Show also that Alt(6) has no subgroups of prime

 index (it is the smallest group with this property).

 Exercise 5-7. For n > 5 show that Alt(n) has no subgroups of index 2, 3, * *,n-1.

 Exercise 5-8. If G has a subgroup of index 2, 3, or 4 show that G cannot be simple.

 Exercise 5-9. For any positive integer, n, there are but a finite number of simple

 groups having a subgroup of index n.

 It would be of great interest if this last result could be sharpened sufficiently to

 give a useful count. The next two problems are from recent issues of the AMERICAN

 MATHEMATICAL MONTHLY and are easy if set up with the proper group or subgroup

 acting on the correct set.

 Exercise 5-10. If G is of order pnm where m < 2p and p is prime, then G has a

 normal subgroup of order pn or pn-l 1.

 Exercise 5-11. If G is a torsion group and H a subgroup of finite index m such
 that each nonidentity element of H has order > m, then H is normal. [It is convenient

 to consider m prime and composite separately.]

 Exercise 5-12. Show that the smallest symmetric group which contains a

 subgroup isomorphic to the quaternions is Sym (8).

 Next we develop a short proof of the Sylow theorems using virtually no group
 theory. The standard proof due to Frobenius [4] can be found in many books such
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 1973] FINITE GROUPS ACTING ON SETS WITH APPLICATIONS 145

 as Curtis and Reiner [3]. We start with some elementary results from ring theory.

 Our approach is due in part to Wielandt [13].

 Exercise 5-13. Prove that the binomial theorem holds in any commutative ring.

 Exercise 5-14. If p is a prime show

 (a) p (P)fork=1,2, ..,p-1.
 (b) (a + b)P = aP + bP in any commutative ring of characteristic p.

 (c) The Frobenius map a - aP is a ring homomorphism in any commutative

 ring of characteristic p.

 (d) a + a pis a ring homomorphism in any commutative ring of characteristic p.

 One application of Exercise 5-14 (c) is the following:

 Exercise 5-15.

 (I) aP = a for all a e 7p, the integers modulo p.
 (II) Equivalently aP _ a (mod p) for a E ZZ.

 Exercise 5-16. Show that (P q) = mcz where c _ 1 (modp). If pt m this

 follows from Exercise 5-14(d). Otherwise it seems necessary to either expand the

 binomial coefficient or to check out what happens with a known group in the middle

 of Exercise 5-17.

 Exercise 5-17 (The First Sylow Theorem). Let G be a finite group of order

 n = pam where ptm and let S be the set of all subsets of order pb where pbl n. Let
 G act on S by right multiplication and show that this actually is an action.

 Use the previous exercise to show that not every orbit has length divisible by
 pa-b+ .Let (9 be one such nondivisible orbit and let T be one of the sets in (9. Show
 that GT has order divisible by pb. To finish let GT act on the set T by right multi-

 plication and use the left cancellation law to show I GT < pb So that St(T) is the
 desired subgroup.

 Exercise 5-17.

 (a) We now know that Alt(6) must have subgroups of order 1, 2, 4, 8, 3, 9, and 5.

 Write down explicitly one subgroup of each of these orders.

 (b) Show that in any finite p-group the converse of Lagrange's Theorem is true.

 Exercise 5-18. This proof of Sylow's Theorem is constructive in the sense that

 if the multiplication is known in a group the p-subgroups can be constructed. Try

 this for some group of very small order.

 Exercise 5-19 (continued from Exercise 5-17). Show that pa-b+l does not
 divide the orbit length of (9 if and only if (9 consists only of left cosets of subgroups

 of order pb.
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 146 MATHEMATICS MAGAZINE [May-June

 Exercise 5-20 (The 2nd Sylow Theorem).A group G of order pa in where p,J m

 has 1 + kp subgroups of order pa (which are called p-sylow subgroups). In fact the

 number of subgroups of order pb is of the form 1 + kp for all b ? a.

 Exercise 5-21 (The 3rd Sylow Theorem). The exercise is to fill in the details of
 the following argument. Let G be a finite group and let S be the set of all p-sylow

 subgroups of G. Assume that there are two distinct orbits @1 and @2 when G acts on S
 by conjugation. Let P1 and P2 be p-sylow subgroups, P1 in OQ, and P2 in (2* If P1

 acts on ( we see that (912 = 0 (mod p) but P2 acting on ( yields 1@j12 = 1 (mod p).
 Thus G acting on S must have but one orbit and thus all the p-sylow subgroups of G
 are conjugate.

 Exercise. 5-22 For each pf I P) where P is a finite p-group there are 1 + kp
 subgroups of order pm.

 Exercise 5-23. Show that the following 3 sets of matrices all with entries in Zp
 are conjugate.

 I a b l1 e O I 0 0 1

 T, = 0 1 c T2 = | 0 |,T3 =|i I 0 |,aAbc,e,figiij,k c- P.

 o0011 T f g ij = j k10
 Exercise 5-24. If P is a p-sylow subgroup of a finite group G then the number of

 p-sylow subgroups in G is

 I G I

 I NG(P) Ii

 Exercise 5-25. There are no simple groups of order 200.

 Exercise 5-26. How many p-sylow subgroups are in SL(2, Zp)?

 6. Exercises 6-1 and 6-2 are worth noting for anyone who has wanted to explain
 how modern algebra got its name (the algebra part) without explaining a substantial

 part of Galois Theory.

 Exercise 6-1. If a and b are two elements of order 2 in a group G, then <a, b>,
 the subgroup generated by a and b, is a dihedral group of order 2n where n is the
 order of the element ab.

 We now want to examine the roots of polynomials over the rationals. Iff(x) is a

 polynomial of degree n it has at most n distinct roots in its splitting field, K. We are
 interested in Sym(n), the symmetric group on these n roots. In particular we are
 interested in two subsets of Sym(n), those elements that are in some way computable

 and the Galois group of K over Q. Let us look at an example where there are a few
 computable elements of Sym(n) available.
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 1973) FINITE GROUPS ACTING ON SETS WITH APPLICATIONS 147

 Exercise 6-2. Is the polynomial f(x) = x8 + (x + 1)8 + 1 irreducible? Hint:
 a ~~~~~b

 Note that x A 1 Ix and x -1 - 1 - x are elements permuting the 8 roots. (It can
 be shown thatf(x) has distinct roots by showing g.c.d. (f(x),f'(x)) = 1.)

 [Use Exercise 6-1, some computations to find an element of order 3, Exercise 2-2,

 and the fact that complex roots of an equation with real coefficients come in complex

 pairs.]

 Another interesting connection between computable elements and Galois groups is

 that if x 4 a-X +b (a, b, c, d E 7) is a permutation of the roots of a polynomial, then

 a commutes with each element of the Galois group.

 Exercise 6-3. Prove this assertion.

 Exercise 6-4. Characterize those polynomials such that x 4 1 Ix permutes their

 roots.

 Exercise 6-5. Show that f(x) = 1i=0 aixi + Z 1 an-iX n + with a i EQ has a
 rational root. Hint: Use 2-2 and 6-4.

 Exercise 6-6. Compute the centralizers of the following elements in Sym(n).

 (a) a = (123 ... n)
 (b) b = (123)
 (c) c = (12) (34) ... (n - 1, n) where n is even.

 Show that CsYm(n)(c) is solvable iff n = 2,4,6, or 8.

 Exercise 6-7. Show that the polynomial

 ao(X2n+ 1) + a (x2'n- + x) + a2(X2n-2 + X2) + + a Xn

 is solvable by radicals if n < 4 where a, e ER.
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