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In a 1670 letter to Christian Huygens (1629 - 1695), the celebrated philosopher and
mathematician Gottfried W. Leibniz (1646 - 1716) wrote as follows:

I am not content with algebra, in that it yields neither the shortest proofs nor
the most beautiful constructions of geometry. Consequently, in view of this, I
consider that we need yet another kind of analysis, geometric or linear, which
deals directly with position, as algebra deals with magnitude. [1, p. 30]

Known today as the field of ‘topology’, Leibniz’s study of position was slow to develop as a
mathematical field. As C. F. Gauss noted in 1833,

Of the geometry of position, which Leibniz initiated and to which only two geome-
ters, Euler and Vandermonde, have given a feeble glance, we know and possess,
after a century and a half, very little more than nothing. [1, p. 30]

The ‘feeble glance’ which Leonhard Euler (1707 - 1783) directed towards the geometry of
position consists of a single paper now considered to be the starting point of modern graph
theory in the West. Within the history of mathematics, the eighteenth century itself is
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commonly known as ‘The Age of Euler’ in recognition of the tremendous contributions
that Euler made to mathematics during this period. Born in Basel, Switzerland, Euler
studied mathematics under Johann Bernoulli (1667 - 1748), then one of the leading European
mathematicians of the time and among the first — along with his brother Jakob Bernoulli
(1654 - 1705) — to apply the new calculus techniques developed by Leibniz in the late
seventeenth century to the study of curves. Euler soon surpassed his early teacher, and
made important contributions to an astounding variety of subjects, ranging from number
theory and analysis to astronomy and optics to mapmaking, in addition to graph theory
and topology. His work was particularly important in re-defining calculus as the study of
analytic functions, in contrast to the seventeenth century view of calculus as the study of
curves. Amazingly, nearly half of Euler’s nearly 900 books, papers and other works were
written after he became almost totally blind in 1771.

The paper we examine in this project appeared in Commentarii Academiae Scientiarum
Imperialis Petropolitanae in 1736. In it, Euler undertakes a mathematical formulation of
the now-famous Königsberg Bridge Problem: is it possible to plan a stroll through the town
of Königsberg which crosses each of the town’s seven bridges once and only once? Like
other early graph theory work, the Königsberg Bridge Problem has the appearance of being
little more than an interesting puzzle. Yet from such deceptively frivolous origins, graph
theory has grown into a powerful and deep mathematical theory with applications in the
physical, biological, and social sciences. The resolution of the Four Color Problem — one
of graph theory’s most famous historical problems — has even raised new questions about
the notion of mathematical proof itself. First formulated by Augustus De Morgan in a 1852
letter to Hamilton, the Four Color Problem asks whether four colors are sufficient to color
every planar map in such a way that regions sharing a boundary are colored in different
colors. After a long history of failed attempts to prove the Conjecture, Kenneth Appel (1932
- ) and Wolfgang Haken (1928 - ) published a computer-assisted proof in 1976 which many
mathematicians still do not accept as valid. At the heart of the issue is whether a proof that
can not be directly checked by any member of the mathematical community can really be
considered to be a proof.

This modern controversy highlights the historical fact that standards of proof have always
varied from century to century, and from culture to culture. This project will highlight one
part of this historical story by examining the differences in precision between an eighteenth
century proof and a modern treatment of the same result. In particular, we wish to contrast
Euler’s approach to the problem of finding necessary and sufficient conditions for the exis-
tence of what is now known as an ‘Euler circuit’ to a modern proof of the main result of the
paper.

In what follows, we take our translation from [1, pp. 3 - 8], with some portions elimi-
nated in order to focus only on those most relevant to Euler’s reformulation of the ‘bridge
crossing problem’ as a purely mathematical problem. Definitions of modern terminology are
introduced as we proceed through Euler’s paper; modern proofs of two lemmas used in the
proof of the main result are also included in an appendix.
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SOLUTIO PROBLEMATIS AD GEOMETRIAM SITUS PERTINENTIS

1 In addition to that branch of geometry which is concerned with magnitudes, and
which has always received the greatest attention, there is another branch, pre-
viously almost unknown, which Leibniz first mentioned, calling it the geometry
of position. This branch is concerned only with the determination of position
and its properties; it does not involve measurements, nor calculations made
with them. It has not yet been satisfactorily determined what kind of problems
are relevant to this geometry of position, or what methods should be used in
solving them. Hence, when a problem was recently mentioned, which seemed
geometrical but was so constructed that it did not require the measurement of
distances, nor did calculation help at all, I had no doubt that it was concerned
with the geometry of position — especially as its solution involved only position,
and no calculation was of any use. I have therefore decided to give here the
method which I have found for solving this kind of problem, as an example of
the geometry of position.

2 The problem, which I am told is widely known, is as follows: in Königsberg in
Prussia, there is an island A, called the Kneiphof ; the river which surrounds it
is divided into two branches, as can be seen in Fig. [1.2], and these branches
are crossed by seven bridges, a, b , c , d , e , f and g. Concerning these
bridges, it was asked whether anyone could arrange a route in such a way that
he would cross each bridge once and only once. I was told that some people
asserted that this was impossible, while others were in doubt: but nobody would
actually assert that it could be done. From this, I have formulated the general
problem: whatever be the arrangement and division of the river into branches,
and however many bridges there be, can one find out whether or not it is possible
to cross each bridge exactly once?

[Figure 1.2]

Notice that Euler begins his analysis of the ‘bridge crossing’ problem by first replacing the
map of the city by a simpler diagram showing only the main feature. In modern graph theory,
we simplify this diagram even further to include only points (representing land masses) and
line segments (representing bridges). These points and line segments are referred to as
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‘vertices ’ (singular: vertex) and ‘edges ’ respectively. The collection of vertices and edges
together with the relationships between them is called a ‘graph’. More precisely, a graph
consists of a set of vertices and a set of edges, where each edge may be viewed as an ordered
pair of two (usually distinct) vertices. In the case where an edge connects a vertex to itself,
we refer to that edge as a ‘loop’.

• Question A. Sketch the diagram of a graph with 5 vertices and 8 edges to represent
the following bridge problem.

3 As far as the problem of the seven bridges of Königsberg is concerned, it can
be solved by making an exhaustive list of all possible routes, and then finding
whether or not any route satisfies the conditions of the problem. Because of
the number of possibilities, this method of solution would be too difficult and
laborious, and in other problems with more bridges it would be impossible.
Moreover, if this method is followed to its conclusion, many irrelevant routes
will be found, which is the reason for the difficulty of this method. Hence I
rejected it, and looked for another method concerned only with the problem
of whether or not the specified route could be found; I considered that such a
method would be much simpler.

4 My whole method relies on the particularly convenient way in which the crossing
of a bridge can be represented. For this I use the capital letters A, B, C, D,
for each of the land areas separated by the river. If a traveller goes from A
to B over bridge a or b, I write this as AB — where the first letter refers to
the area the traveller is leaving, and the second refers to the area he arrives
at after crossing the bridge. Thus, if the traveller leaves B and crosses into D
over bridge f, this crossing is represented by BD, and the two crossing AB and
BD combined I shall denote by the three letters ABD, where the middle letter
B refers to both the area which is entered in the first crossing and to the one
which is left in the second crossing.

5 Similarly, if the traveller goes on from D to C over the bridge g, I shall represent
these three successive crossings by the four letters ABDC, which should be taken
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to mean that the traveller, starting in A, crosses to B, goes on to D, and finally
arrives in C. Since each land area is separated from every other by a branch of
the river, the traveller must have crossed three bridges. Similarly, the successive
crossing of four bridges would be represented by five letters, and in general,
however many bridges the traveller crosses, his journey is denoted by a number
of letters one greater than the number of bridges. Thus the crossing of seven
bridges requires eight letters to represent it.

After rejecting the impractical strategy of solving the bridge-crossing problem by making
an exhaustive list of all possible routes, notice that Euler again reformulates the problem in
terms of sequences of letters (vertices) representing land masses, thereby making the diagram
itself unnecessary to the solution of the problem. Today, we say that two vertices joined by
an edge in the graph are ‘adjacent ’, and refer to a sequence of adjacent vertices as a ‘walk ’.
Technically, a walk is a sequence of alternating (adjacent) vertices and edges v0e1v1e1 . . . envn

in which both the order of the vertices and the order of the edges used between adjacent
vertices are specified. In the case where no edge of the graph is repeated (as required in a
bridge-crossing route), the walk is known as a ‘path’. If the initial and terminal vertex are
equal, the path is said to be a ‘circuit ’. If every edge of the graph is used exactly once (as
desired in a bridge-crossing route), the path (circuit) is said to be a ‘Euler path (circuit)’.

• Question B. For the bridge problem shown in Question A above, how many letters
(representing graph vertices) will be needed to represent an Euler path?

Having reformulated the bridge crossing problem in terms of sequences of letters (ver-
tices) alone, Euler now turns to the question of determining whether a given bridge crossing
problem admits of a solution. As you read through Euler’s development of a procedure for
deciding this question in paragraphs 7 - 13 below, pay attention to the style of argument
employed, and how this differs from that used in a modern textbook.

7 The problem is therefore reduced to finding a sequence of eight letters, formed
from the four letters A, B, C and D, in which the various pairs of letters occur
the required number of times. Before I turn to the problem of finding such a
sequence, it would be useful to find out whether or not it is even possible to
arrange the letters in this way, for if it were possible to show that there is no
such arrangement, then any work directed toward finding it would be wasted. I
have therefore tried to find a rule which will be useful in this case, and in others,
for determining whether or not such an arrangement can exist.

[Figure 1.3]
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8 In order to try to find such a rule, I consider a single area A, into which there
lead any number of bridges a, b, c, d, etc. (Fig. [1.3]). Let us take first the
single bridge a which leads into A: if a traveller crosses this bridge, he must
either have been in A before crossing, or have come into A after crossing, so
that in either case the letter A will occur once in the representation described
above. If three bridges (a, b and c, say) lead to A, and if the traveller crosses
all three, then in the representation of his journey the letter A will occur twice,
whether he starts his journey from A or not. Similarly, if five bridges lead to A,
the representation of a journey across all of them would have three occurrences
of the letter A. And in general, if the number of bridges is any odd number,
and if it is increased by one, then the number of occurrences of A is half of the
result.

• Question C. In paragraph 8, Euler deduces a rule for determining how many times
a vertex must appear in the representation of the route for a given bridge problem
for the case where an odd number of bridges leads to the land mass represented by
that vertex. Before reading further, use this rule to determine how many times
each of the vertices A , B , C and D would appear in the representation of a route for
the Königsberg Bridge Problem. Given Euler’s earlier conclusion (paragraph 5) that a
solution to this problem requires a sequence of 8 vertices, is such a sequence possible?
Explain.

9 In the case of the Königsberg bridges, therefore, there must be three occurrences
of the letter A in the representation of the route, since five bridges (a, b, c, d, e)
lead to the area A. Next, since three bridges lead to B, the letter B must occur
twice; similarly, D must occur twice, and C also. So in a series of eight letters,
representing the crossing of seven bridges, the letter A must occur three times,
and the letters B, C and D twice each - but this cannot happen in a sequence
of eight letters. It follows that such a journey cannot be undertaken across the
seven bridges of Königsberg.

10 It is similarly possible to tell whether a journey can be made crossing each
bridge once, for any arrangement of bridges, whenever the number of bridges
leading to each area is odd. For if the sum of the number of times each letter
must occur is one more than the number of bridges, then the journey can be
made; if, however, as happened in our example, the number of occurrences is
greater than one more than the number of bridges, then such a journey can
never be accomplished. The rule which I gave for finding the number of occur-
rences of the letter A from the number of bridges leading to the area A holds
equally whether all of the bridges come from another area B, as shown in Fig.
[1.3], or whether they come from different areas, since I was considering the
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area A alone, and trying to find out how many times the letter A must occur.

11 If, however, the number of bridges leading to A is even, then in describing the
journey one must consider whether or not the traveller starts his journey from
A; for if two bridges lead to A, and the traveller starts from A, then the letter
A must occur twice, once to represent his leaving A by one bridge, and once
to represent his returning to A by the other. If, however, the traveller starts
his journey from another area, then the letter A will only occur once; for this
one occurrence will represent both his arrival in A and his departure from there,
according to my method of representation.

12 If there are four bridges leading to A, and if the traveller starts from A, then in
the representation of the whole journey, the letter A must occur three times if
he is to cross each bridge once; if he begins his walk in another area, then the
letter A will occur twice. If there are six bridges leading to A, then the letter
A will occur four times if the journey starts from A, and if the traveller does
not start by leaving A, then it must occur three times. So, in general, if the
number of bridges is even, then the number of occurrences of A will be half of
this number if the journey is not started from A, and the number of occurrences
will be one greater than half the number of bridges if the journey does start at
A.

13 Since one can start from only one area in any journey, I shall define, correspond-
ing to the number of bridges leading to each area, the number of occurrences
of the letter denoting that area to be half the number of bridges plus one, if
the number of bridges is odd, and if the number of bridges is even, to be half
of it. Then, if the total of all the occurrences is equal to the number of bridges
plus one, the required journey will be possible, and will have to start from an
area with an odd number of bridges leading to it. If, however, the total number
of letters is one less than the number of bridges plus one, then the journey is
possible starting from an area with an even number of bridges leading to it,
since the number of letters will therefore be increased by one.

Notice that Euler’s definition concerning ‘the number of occurrences of the letter denoting
that area’ depends on whether the the number of bridges (edges) leading to each area (vertex)
is even or odd. In contemporary terminology, the number of edges incident on a vertex V is
referred to as the ‘degree of vertex V ’.

• Question D. Suppose v is a vertex of degree n in a graph G. State Euler’s definition
for ‘the number of occurrences of the letter denoting that area’ as a function o(n)
using modern notation. Comment on how a proof that this ‘definition’ gives a correct
rule in a modern textbook would differ from the argument that Euler presents for the
correctness of this rule in paragraphs 9 - 12.
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14 So, whatever arrangement of water and bridges is given, the following method
will determine whether or not it is possible to cross each of the bridges: I first
denote by the letters A, B, C, etc. the various areas which are separated from
one another by the water. I then take the total number of bridges, add one, and
write the result above the working which follows. Thirdly, I write the letters A,
B, C, etc. in a column, and write next to each one the number of bridges lead-
ing to it. Fourthly, I indicate with an asterisk those letters which have an even
number next to them. Fifthly, next to each even one I write half the number,
and next to each odd one I write half the number increased by one. Sixthly, I
add together these last numbers, and if this sum is one less than, or equal to,
the number written above, which is the number of bridges plus one, I conclude
that the required journey is possible. It must be remembered that if the sum is
one less than the number written above, then the journey must begin from one
of the areas marked with an asterisk, and it must begin from an unmarked one
if the sum is equal. Thus in the Königsberg problem, I set out the working as
follows:

Number of bridges 7, which gives 8 Bridges

Bridges
A, 5 3
B, 3 2
C, 3 3
D, 3 2

Since this gives more than 8, such a journey can never be made.

15 Suppose that there are two islands A and B surrounded by water which leads
to four rivers as shown in Fig. [1.4].

[Figure 1.4]

Fifteen bridges (a, b, c, d, etc.) cross the rivers and the water surrounding
the islands, and it is required to determine whether one can arrange a journey
which crosses each bridge exactly once. First, therefore, I name all the areas
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separated by water as A, B, c: D, E, F, so that there are six of them. Next, I
increase the number of bridges (15) by one, and write the result (16) above the
working which follows.

16
A*, 8 4
B*, 4 2
C*, 4 2
D, 3 2
E, 5 3
F*, 6 3

16

Thirdly, I write the letters A, B, C, etc. in a column, and write next to each
one the number of bridges which lead to the corresponding area, so that eight
bridges lead to A, four to B, and so on. Fourthly, I indicate with an asterisk
those letters which have an even number next to them. Fifthly, I write in the
third column half the even numbers in the second column, and then I add one
to the odd numbers and write down half the result in each case. Sixthly, I add
up all the numbers in the third column in turn, and I get the sum 16; since this
is equal to the number (16) written above, it follows that the required journey
can be made if it starts from area D or E, since these are not marked with an
asterisk. The journey can be done as follows:

EaFbBcFdAeFfCgAhCiDkAmEnApBoElD,

where I have written the bridges which are crossed between the correspond-
ing capital letters.

• Question E. Apply Euler’s procedure to determine whether the graph representing
the ‘bridge-crossing’ question in Question A above contains an Euler path. If so, find
one.

In paragraphs 16 and 17, Euler makes some observations intended to simplify the proce-
dure for determining whether a given bridge-crossing problem has a solution. As you read
these paragraphs, consider how to reformulate these observations in terms of ‘degree’.

16 In this way it will be easy, even in the most complicated cases, to determine
whether or not a journey can be made crossing each bridge once and once only.
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I shall, however, describe a much simpler method for determining this which is
not difficult to derive from the present method, after I have first made a few
preliminary observations. First, I observe that the numbers of bridges written
next to the letters A, B, C, etc. together add up to twice the total number
of bridges. The reason for this is that, in the calculation where every bridge
leading to a given area is counted, each bridge is counted twice, once for each
of the two areas which it joins.

17 It follows that the total of the numbers of bridges leading to each area must
be an even number, since half of it is equal to the number of bridges. This is
impossible if only one of these numbers is odd, or if three are odd, or five, and
so on. Hence if some of the numbers of bridges attached to the letters A, B,
C, etc. are odd, then there must be an even number of these. Thus, in the
Königsberg problem, there were odd numbers attached to the letters A, B, C
and D, as can be seen from Paragraph 14, and in the last example (in Paragraph
15), only two numbers were odd, namely those attached to D and E.

• Question F. The result described in Paragraph 16 is sometimes referred to as ‘The
Handshake Theorem’, based on the equivalent problem of counting the number of hand-
shakes that occur during a social gathering at which every person present shakes hands
with every other person present exactly once. A modern statement of the Handshake
Theorem would be: “The sum of the degree of all vertices in a finite graph equals twice
the number of edges in the graph.” Locate this theorem in a modern textbook, and
comment on how the proof given there compares to Euler’s discussion in paragraph 16.

• Question G. The result described in Paragraph 17 can be re-stated as follows: “Every
finite graph contains an even number of vertices with odd degree.” Locate this theorem
in a modern textbook, and comment on how the proof given there compares to Euler’s
discussion in paragraph 17.

Euler now uses the above observations to develop simplified rules for determining whether
a given bridge-crossing problem has a solution. Again, consider how you might reformulate
this argument in modern graph theoretic terms; we will consider a modern proof of the main
results below.

18 Since the total of the numbers attached to the letters A, B, C, etc. is equal
to twice the number of bridges, it is clear that if this sum is increased by 2
and then divided by 2, then it will give the number which is written above the
working. If, therefore, all of the numbers attached to the letters A, B, C, D,
etc. are even, and half of each of them is taken to obtain the numbers in the
third column, then the sum of these numbers will be one less than the number
written above. Whatever area marks the beginning of the journey, it will have
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an even number of bridges leading to it, as required. This will happen in the
Königsberg problem if the traveller crosses each bridge twice, since each bridge
can be treated as if it were split in two, and the number of bridges leading into
each area will therefore be even.

19 Furthermore, if only two of the numbers attached to the letters A, B, C, etc.
are odd, and the rest are even, then the journey specified will always be possible
if the journey starts from an area with an odd number of bridges leading to it.
For, if the even numbers are halved, and the odd ones are increased by one, as
required, the sum of their halves will be one greater than the number of bridges,
and hence equal to the number written above. It can further be seen from this
that if four, or six, or eight. . . odd numbers appear in the second column,
then the sum of the numbers in the third column will be greater by one, two,
three. . . than the number written above, and the journey will be impossible.

20 So whatever arrangement may be proposed, one can easily determine whether
or not a journey can be made, crossing each bridge once, by the following rules:

If there are more than two areas to which an odd number of bridges
lead, then such a journey is impossible.

If, however, the number of bridges is odd for exactly two areas, then
the journey is possible if it starts in either of these areas.

If, finally, there are no areas to which an odd number of bridges leads,
then the required journey can be accomplished starting from any area.

With these rules, the given problem can always be solved.

21 When it has been determined that such a journey can be made, one still has to
find how it should be arranged. For this I use the following rule: let those pairs
of bridges which lead from one area to another be mentally removed, thereby
considerably reducing the number of bridges; it is then an easy task to construct
the required route across the remaining bridges, and the bridges which have been
removed will not significantly alter the route found, as will become clear after a
little thought. I do not therefore think it worthwhile to give any further details
concerning the finding of the routes.

A complete modern statement of Euler’s main result requires one final definition: a graph
is said to be ‘connected’ if for every pair of vertices u, v in the graph, there is a walk from
u to v. Notice that a graph which is not connected will consist of several components, or
subgraphs, each of which is connected. With this definition in hand, the main results of
Euler’s paper can be stated as follow:

Theorem: A finite graph G contains an Euler circuit if and only if G is connected
and contains no vertices of odd degree.

Corollary: A finite graph G contains an Euler path if and only if G is connected
and contains at most two vertices of odd degree.
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• Question H. Illustrate why the modern statement specifies that G is connected by
giving an example of a disconnected graph which has vertices of even degree only and
contains no Euler circuit. Explain how you know that your example contains no Euler
circuit.

• Question I. Comment on Euler’s proof of this theorem and corollary as they appear
in paragraphs 16 — 19. How convincing do you find his proof? Where and how does
he make use of the assumption that the graph is connected in his proof?

• Question J. Below is the sketch of the proof of the ‘if’ direction of the main Theorem.
Complete this proof sketch by filling in the missing details. (Specific questions that
you will need to address in your completed proof are indicated in italics.)

NOTE: You may make use of the lemmas that are provided (with proofs) in the
Appendix of this project to do so.

CLAIM:

If G is connected and has no vertices of odd degree, then G contains an Euler circuit.

PROOF:

Suppose G is connected and has no vertices of odd degree.

We show that G contains an Euler circuit as follows:

CASE I Consider the case where every edge in G is a loop

– Since every edge in G is a loop, G must contain only one vertex.

How do we know a connected graph in which every edge in G is a loop contains
only one vertex?

– Since every edge in G is a loop on the single vertex V , G must contain an Euler
circuit.

What will an Euler circuit in a connected graph on the single vertex v look like as
a sequence of alternating vertices and edges?

CASE II Consider the case where at least one edge in G is not a loop

– Choose any vertex v in G that is incident on at least one edge that is not a loop.

– Let u and w be any vertices adjacent to v.

How do we know two such vertices exist?

– Let W be a simple path from v to w that does not use the edge {vw}.
How do we know there is a walk from v to w that does not use this edge?

(You may wish to consider what happens in the case where every walk from v to w
uses the edge {vw}; what happens to the graph when the edge {vw} is removed?)

Why can we assume that this walk is, in fact, a simple path?
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– Use W to obtain a circuit C starting and ending at v.

How is this done?

– Consider the two cases:

∗ C uses every edge of G.
Why are we now done?

∗ C does not use every edge in G.

· Consider the graph G′ obtained by removing the edges of C from the
graph G along with any vertices that are isolated by doing so. Note that
G′ is connected and has only vertices of even degree.
How do we that G′ is connected and has only vertices of even degree?

· Select a vertex v′ in G′ which appears in C.
How do we know that such a vertex exists?

· Repeat the process outlined above to obtain a circuit C ′ in G′, and com-
bine C with C ′ to obtain a new circuit C1.
How do we combine the circuits C and C ′ from our construction into
a single circuit? How do we know that the combined walk C1 is a cir-
cuit? How do we know that the combined circuit C1 does not contain any
repeated edges?

· Repeat this process as required until a circuit is obtained that includes
every edge of G.
How do we know this process will eventually terminate?

• Question K. Now write a careful (modern) proof of the ‘only if’ direction. Begin by
assuming that G is a connected graph which contains an Euler circuit. Then prove
that G has no vertices of odd degree.

• Question L. Finally, give a careful (modern) proof of the corollary.
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APPENDIX: Lemmas Used in Proving Euler’s Theorem

LEMMA I

For every graph G, if W is a walk in G that has repeated edges, then W has repeated vertices.

PROOF
Let G be a graph and W a walk in G that has a repeated edge e. Let v and w be the

endpoint vertices of e.
If e is a loop, note that v = w, and v is a repeated vertex of W since the sequence ‘vev’ must
appear somewhere in W .
Thus, we need only consider the case where e is not a loop and v 6= w. In this case, one of
following must occur:

1. The edge e is immediately repeated in the walk W

That is, W includes a segment of the form ‘vewev’ a segment of the form ‘wevew’.

2. The edge e is not immediately repeated, but occurs later in the walk W and in the
same order

That is, either W includes a segment of the form ‘vew . . . vew’ or W includes a segment
of the form ‘wev . . . wev’.

3. The edge e is not immediately repeated, but occurs later in the walk W in the reverse
order

That is, either W includes a segment of the form ‘vew . . . wev’ or W includes a segment
of the form ‘wev . . . vew’.

Since one of the vertices v or w is repeated in the first case, while both the vertices v and w
are repeated in the latter two cases, this completes the proof.

COROLLARY

For every graph G, if W is a walk in G that has no repeated vertices, then W has no repeated
edges.

PROOF

This is the contrapositive of Lemma I.
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LEMMA II

If G is a connected graph, then every pair of vertices of G is connected by a simple path.

PROOF

Let G be a connected graph. Let u and w be any arbitrary vertices in G. Since G is
connected, we know G contains a walk W from u to w. Denote this walk by the sequence
‘v0e0v1e1 . . . vnenvn+1’, where e0, e1, . . . en denote edges, v0, . . . , vn+1 denote vertices with v0 =
u the starting vertex and vn+1 = w the ending vertex.

Note that W may include repeated vertices. If so, construct a new walk W ′ from u to w
as follows:

• Let v be the first repeated vertex in the walk W . Then v = vi and v = vj for some
i < j. To construct the new walk W ′, delete the segment of the original walk between
the first occurrence of v and its next occurrence, including the second occurrence of v.
That is, replace

v0︸︷︷︸
u

e1v1e2 . . . vi−1ei−1

v︷︸︸︷
vi eivi+1ei+1 . . . ej−1vj−1ej

v︷︸︸︷
vj︸ ︷︷ ︸

delete

ej+1vj+1 . . . vn−1en−1vnen vn+1︸ ︷︷ ︸
w

by

ue1v1e2 . . . vi−1ei−1

v︷︸︸︷
vi ej+1vj+1 . . . vn−1en−1vnenw

Since ‘vej+1’ appeared in the original walk W , we know the edge ej+1 is incident on
the vertex v = vi. Thus, the new sequence of alternating edges and vertices is also a
walk from u = v0 to w = vn+1.

(Also note that if j = n + 1, then the repeated vertex was w = vn+1 and the walk now
ends at vi, where we know that vi = vj = vn+1 = w; thus, the new walk also ends at
w.)

• If the new walk W ′ contains a repeated vertex, we repeat the above process. Since the
sequence is finite, we know that we will obtain a walk with no repeated vertices after
a finite number of deletions.

In this way, we obtain a new walk S from u to w that contains no repeated vertices. By the
corollary to Lemma I, it follows that S contains no repeated edges. Thus, by definition of
simple path, S is a simple path from u to w. Since u and w were arbitrary, this completes
the proof.
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