
Math 4707: Introduction to

Combinatorics and Graph Theory

Lecture Addendum, November 3rd and 8th, 2010

Counting Closed Walks and Spanning Trees in Graphs
via Linear Algebra and Matrices

1 Adjacency Matrices and Counting Closed Walks

The material of this section is based on Chapter 1 of Richard Stanley’s notes “Topics in Algebraic Combina-

torics”, which can be found at http://math.mit.edu/∼rstan/algcomb.pdf.

Recall that an m-by-n matrix is an array of numbers (m rows and n columns), and we can multiply an m-

by-n matrix and an n-by-p matrix together to get an m-by-p matrix. The resulting matrix has entries obtained

by taking each row of the first matrix, and each column of the second and taking their dot product.

For example,
[

a b c
d e f

]





g h
i j
k ℓ



 =

[

ag + bi + ck ah + bj + cℓ
dg + ei + fk dh + ej + fℓ

]

.

We define the adjacency matrix A(G) of a graph G, with |V (G)| = n, to be the n-by-n matrix whose

entry in the ith row and the jth column is

aij = # of edges between vi and vj .

Theorem. Letting
(

A(G)k
)

ij
denote the entry in the ith row and jth column of the kth power of A(G), we

obtain that
(

A(G)k
)

ij
= # of walks of length exactly k between vi and vj .

Proof. Was given in class by induction using the fact that A(G)k = A(G)k−1A(G) and using the definition

of matrix multiplication.

As a special case, the diagonal entry
(

A(G)k
)

ii
is the number of closed walks from vi back to itself with

length k. The sum of the diagonal entries of A(G)k is the total number of closed walks of length k in graph G.

In linear algebra, the sum of the diagonal entries of a matrix is known as the trace.
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Another important definition from linear algebra are eigenvalues and eigenvectors of a matrix M . We

now review their definition and a few related results from linear algebra.

Definition. The vector (i.e. n-by-1 matrix) v is an eigenvector of M with eigenvalue λ if the equation

Mv = λv

is satisfied. That is, multiplying the column vector v by M is equivalent to rescaling each entry of v by the

same coefficient, λ.

Theorem. If an n-by-n matrix M is symmetric and has only real numbers as entries, then M has n linearly

independent eigenvectors and n associated eigenvalues, although possibly with repeats.

Here, linearly independent means that one of these n eigenvectors can not be written as a scaled sum (linear

combination) of the other vectors. In other words, the collection of eigenvectors looks like {v1, v2, . . . , vn}, and

there does not exist numbers c1, c2, . . . , cn so that

c1v1 + · · ·+ cnvn = 0

unless each of the ci’s are actually all zero themselves.

For example, the vectors





1
0
0



,





2
1
0



, and





0
−1
1



 are linearly independent since the first vector has zeros in

the second and third row and the second vector has a zero in the third row.

Since the adjacency matrix A(G) of any graph is symmetric and has real numbers (in fact integers) as

entries, any adjacency matrix has n different eigenvalues that can be found, for example by finding n linearly

independent eigenvectors.

Theorem. If a matrix M has eigenvalues λ1, λ2, . . . , λn, then M can be written as the multiplication

M = P











λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λn











P−1,

where P is some invertible n-by-n matrix. Call this diagonal matrix in the middle D.

As a consequence, the kth power of M can be written as

Mk = PDP−1 PDP−1 . . . PDP−1 = PDkP−1.

The kth power of D is again a diagonal matrix, with (Dk)ij = 0 if i 6= j, and (Dk)ii = λk
i .



The trace of Dk is thus simply the sum of powers,

Tr(Dk) = λk
1 + λk

2 + · · · + λk
n.

One last important theorem from linear algebra is that

Theorem. The trace of a matrix M is the same as the trace of the matrix multiplication PMP−1.

Consequently, the trace of A(G)k is simply the sum of the powers of A(G)’s eigenvalues. Putting all of this

together, we come to the following result.

Main Theorem. The number of total closed walks, of length k, in a graph G, from any vertex back to

itself, is given by the formula

λk
1 + λk

2 + · · ·+ λk
n,

where the λi’s are the eigenvalues of A(G), graph G’s adjacency matrix.

Example 1. Let G = C3 = K3, so A(C3) =





0 1 1
1 0 1
1 1 0



 .

Let v1 =





1
1
1



, v2 =





1
−1
0



, and v3 =





0
1
−1



. Note that these three vectors are linearly independent, and

A(C3)v1 = 2v1, A(C3)v2 = −v2, and A(C3)v3 = −v3.

Thus the three eigenvalues of A(C3) are 2, −1, and −1, and

# closed walks in C3 of length k is 2k + (−1)k + (−1)k =

{

2k + 2 if k is even,

2k − 2 if k is odd.

We can also prove this formula combinatorially. For i and j ∈ {1, 2, 3}, let Wij(k) denote the number of

walks of length k from vi to vj . Notice that by symmetry,

W11(k) = W22(k) = W33(k), and

W12(k) = W13(k) = W23(k) = W21(k) = W31(k) = W32(k),

thus it suffices to compute W11(k) and W12(k), noting that the quantity 3W11(k) equals the total number of

closed walks in C3. Considering the last possible edge of a closed walk from v1 to v1, and the last possible edge

of a walk from v1 to v2, we obtain the equations

W11(k) = W12(k − 1) + W13(k − 1) = 2W12(k − 1), and



W12(k − 1) = W11(k − 2) + W13(k − 2) = 2W12(k − 3) + W12(k − 2).

Thus, letting Gk = W12(k), we see that Gk satisfies the recurrence

Gk−1 = Gk−2 + 2Gk−3.

It is easy to verify that the formula

Gk =

{

1
6

(

2k+1 − 2
)

if k is even,
1
6

(

2k+1 + 2
)

if k is odd

satisfies this recurrence and equals W12(k) in the base case when k = 1 or 2. Consequently,

W12(k) =

{

1
6

(

2k+1 − 2
)

if k is even,
1
6

(

2k+1 + 2
)

if k is odd,

and we conclude that the total number of closed walks, 3W11(k), which equals 3 · 2W12(k − 1), has the desired

expression.

Example 2. Let G = C5, so A(C5) =













0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0













. Exercise: The value 2 is an eigenvalue again.

The other four eigenvalues are −1−
√

5
2

, −1−
√

5
2

, −1+
√

5
2

, and −1+
√

5
2

. Thus

# closed walks in C5 of length k is 2k + 2

(

−1 −
√

5

2

)k

+ 2

(

−1 +
√

5

2

)k

=

{

2k + 2Lk if k is even,

2k − 2Lk if k is odd.

Recall that Lk is the kth Lucas number defined as L1 = 1, L2 = 3, Lk+2 = Lk+1 + Lk.

Interesting Challenge: Since we know a combinatorial interpretation of the Lucas numbers, it is possible

to try to find a combinatorial formula for this formula as well. However, this is much more difficult than in the

previous example.

2 Counting spanning trees in graphs

We next use linear algebra for a different counting problem. Recall that a spanning tree of a graph G is a

subgraph T that is a tree that uses every vertex of G. Before we express the formula for the number of spanning

trees in a graph, we need to define another type of matrix that can be associated to a graph.

The Laplacian matrix of a graph L(G) is defined entrywise as follows:

L(G)ij =

{

−A(G)ij = −(# edges from vi to vj) if i 6= j,

deg(vi) if i = j.



Notice that deg(vi) is the sum of (# edges from vi to v1) + (# edges from vi to v2) + · · ·+

(# edges from vi to vn), and so the sum of each row or column of L(G) is zero. Consequently, L(G)







1
...
1






=







0
...
0






,

and in particular L(G) is a singular matrix. However, it turns out that if G is connected, whenever we cross

out the kth row and kth column of L(G) (will not actually matter which k we choose), we get a nonsingular

matrix. We can for instance always cross out the last column and last row of L(G), call this matrix L(G)0, the

Reduced Laplacian Matrix.

Theorem (Kirchhoff’s Matrix-Tree-Theorem). The number of spanning trees of a graph G is equal to

the determinant of the reduced Laplacian matrix of G:

det L(G)0 = # spanning trees of graph G.

(Further, it does not matter what k we choose when deciding which row and column to delete.)

Remark. Even though we allow multigraphs to have loop edges, adding or deleting these from our multi-

graph does not affect the number of spanning trees.

Recall that the determinant of an n-by-n matrix M , with entries Mij , is a number we assign to it by the

following formula

det M =
∑

σ is a permuation of {1,2,...,n}
sgn(σ) M1,σ(1)M2,σ(2) · · ·Mn,σ(n).

Here Mi,σ(i) signifies the entry of M in the ith row and the σ(i)th column and sgn(σ) = ±1 according to how

many cycles are in the permutation σ.

Example The determinant of a 2-by-2 matrix

[

M11 M12

M21 M22

]

is M11M22 − M12M21, and the determinant of




M11 M12 M13

M21 M22 M23

M31 M32 M33



 is M11M22M33 − M11M23M32 + M12M23M31 − M12M21M33 + M13M21M32 − M13M22M31.

The determinant of an n-by-n matrix will involve n! = # permutations of {1, 2, . . . , n} entries, so for n ≥ 4,

these formulas are not as compact. However, there are four important properties that determinants have that

we remind you of, as they make it easier to compute them.

Properties of Determinants.

1) If M is a singular matrix, then det M = 0. (Also, if M is nonsingular, det M 6= 0.)

2) If we add a multiple of one row of M to another, the determinant is left unaffected. Recall that we can

add multiples of one row to another until we get an upper-triangular matrix, one where aij = 0 for every

i > j. This method is called Gaussian elimination.



3) The determinant of an upper-triangular matrix is the product of the diagonal entries.

4) Let E[i] denote a square matrix which has entry Eii = 1 and all other entries are zero. If matrix M and

E[i] have the same size, then det(M + E[i]) = det(M) + det M ′, where M ′ is obtained from M by deleting

the ith row and ith column of M . This property is known as multilinearity of the determinant. (Note that

repeated use of a slight generalization of this method results in the Laplace expansion of a matrix, but we will

not need this for our purposes.)

We use these properties, in particular, multilinearity of the determinant, to prove the Matrix-Tree-Theorem

described above. First, we need to prove another result about spanning trees of graphs.

Definition. Recall that the notation G−{e} denotes the subgraph obtained by taking graph G and deleting

edge e, but leaving all other edges and vertices as is.

We can also define the contraction of a graph, G/{e} is the multigraph (not a subgraph) obtained from G

by contracting the edge e = {v, w} until the two vertices v and w coincide. Call this new vertex vw.

Remark. Note that if edge e is part of a triangle C3 on vertices {u, v, w} then after e is contracted and v,

w coincide, there are now two edges from u to vw in G/{e}. Hence, why in general G/{e} is not a graph, but

is a multigraph.

Furthermore, if we continue the contraction procedure, so that we contract one of the two edges from u

to vw, say e′ then we end up with a loop in the contracted graph (G/{e})/{e′}. So our multigraphs are also

allowed to have loops.

We define the number of spanning trees in a multigraph to be the same as our previous definition except

that if there are multiple edges between two vertices to use, each choice gives rise to a different spanning tree.

We cannot include two parallel edges in a spanning tree as this would be a 2-cycle. We similarly never have

loop edges in a spanning tree.

Theorem. Let κ(G) denote the number of spanning trees in a multigraph G. Then κ(G) satisfies the

following deletion-contraction formula: For any choice of edge e in the multigraph G,

κ(G) = κ(G − {e}) + κ(G/{e}).

The upshot of this theorem is that we reduce the problem to computing the number of spanning trees in a

multigraph with one less edge and one less vertex and a multigraph with one less vertex. Thus inductively, we

could compute the number of spanning trees in any graph this way, since for example we know that any tree

has one spanning tree and a disconnected graph has no spanning trees.

Example 1: Cycle Graphs. While we can see that κ(Cn) = n combinatorially, as explained in class, we

can also prove that this family of graphs have the right number of spanning trees using the deletion-contraction

technique.



If we pick any edge of Cn and delete it, the resulting Cn − {e} = Pn, a path graph on n vertices. Since this

is a tree, it has only 1 spanning tree, itself.

On the other hand, if we contract the edge e, we obtain Cn/{e} = Cn−1. Since we know that C3 = K3 has 31

spanning trees by Cayley’s Theorem, we can thus show by induction that κ(Cn) = 1+κ(Cn−1), and the formula

κ(Cn) = n satisfies both this recurrence and the base case.

Proof of Deletion-Contraction Theorem. Choose an edge e of graph G. We divide the set of spanning

trees of G into the union of two disjoint subsets: (i) those that contain e, and (ii) those that do not contain e.

(i) A spanning tree of G not containing e is also a spanning tree of G − {e}.
(ii) A spanning tree of G that does contain e is equivalent to a spanning tree of G/{e}.

To see the equivalence of (ii), we note that G/{e} has one less vertex and one less edge than G, but except

for edge e, every edge of G corresponds to a unique edge of G/{e}, and vice-versa. Thus, let E(T ) denote the

edges of G corresponding to a spanning tree. Then edge-set E(T )−{e} corresponds to T ′, an edge-set of G/{e}.
Since the subgraph corresponding to T ′ is connected and has the right number of edges, T ′ is a spanning tree

of G/{e}. The correspondence also works in reverse. Thus adding up the number of spanning trees of type (i),

and those of type (ii), gives us the number of spanning trees of G, and the desired formula.

Proof of Matrix Tree Theorem. The following proof appears in Section 13.2 of Godsil and Royle’s

“Algebraic Graph Theory”:

We prove the theorem by induction on the number of edges of G. It is easy to see that det L(G)0 = κ(G)

when G is a graph with one edge. Either the graph has two vertices and is a two-path P2 and the determinant

is 1, or the graph has more than two vertices, is disconnected, and L(G)0 is singular.

Let e be the edge {u, v} and E be the n-by-n matrix with Euu = 1, Evv = 1, Euv = −1, Evu = −1, and all

other entries are 0. Then by the definition of Laplacian matrices,

L(G) = L(G − {e}) + E.

If we delete the row and column corresponding to vertex u in all three of these matrices, we obtain the identity

L(G)0 = L(G − {e})0 + E[v],

where E[v] is the (n − 1)-by-(n − 1) matrix defined above, with Evv = 1 and all other entries are zero.

By using property (4) of determinants, we deduce from the above equation that

det L(G)0 = det L(G − {e})0 + det L(G − {e})e.

Here, L(G−{e})e denotes the matrix obtained from L(G−{e}) by deleting both rows and columns corresponding

to vertices u and v, the two endpoints of edge e. Note that L(G − {e})e also can be thought of as L(G)e, but



more importantly for our purposes, it can be thought of as L(G/{e})0 as well, by reducing from L(G/{e}) by

deleting the row and column corresponding to the new vertex uv. Thus

det L(G)0 = det L(G − {e})0 + det L(G/{e})0.

By induction, det L(G − {e})0 = κ(G − {e}) and det L(G/{e})0 = κ(G/{e}) since these both have less edges

than G, and we conclude the desired determinantal formula.

Example 2: If I asked you to compute the determinant of

M =













5 −1 −1 −1 −1
−1 5 −1 −1 −1
−1 −1 5 −1 −1
−1 −1 −1 5 −1
−1 −1 −1 −1 5













,

you could use Gaussian elimination to reduce M to an upper-triangular matrix or compute the determinant

otherwise. However, now we can instead recognize that the matrix M = L(K6)0, the reduced Laplacian matrix

for complete graph K6. Thus by the Matrix Tree Theorem, det M =# spanning trees in K6. Furthermore, by

Cayley’s theorem, this number is 64 = 1296.

In general, the Matrix Tree Theorem can be helpful in both directions. Both, showing that the number of

spanning trees can be computed via matrices, or using combinatorics to easily compute certain determinants.


