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Suppose we have a collection of n commercial products or n sports teams and we want to
compare them to determine “which is the strongest?” or “which is the weakest?”. Ideally, we
would like to assign each object a “strength value” that expresses its strength relative to the
other objects.

In the “real” world, how would we go about doing this? Perhaps it is very difficult to
compare the objects in bunches, but if we compare the objects just two at a time, it is always
possible to choose one over the other. Then we would like to compare each pair of objects,
choose a winner, and then analyze the results.

Definition 1. A (round-robin) tournament is an orientation of the complete graph Kn.

For example, the following tournament is an orientation of K4:

D

A B

C

We have labelled the vertices by {A, B, C, D}, and we might interpret these as “brands of
toothpaste”. The arrow A → B means that “brand A is judged to be a better toothpaste than
brand B”. In general,

Definition 2. For each directed edge u → v in a tournament T , we say that u dominates v.

So which toothpaste is best? It is not immediately clear, since there is no toothpaste that
dominates every other kind of toothpaste. Our goal is to find a ranking of the vertices from
best to worst (say (A, B, C, D)), with the property that

• If u → v, then vertex u should rank higher than vertex v. (It’s only fair!)
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Definition 3. Suppose we have a ranking of the vertices in a tournament T with v ranked
above u, but u → v. This u → v is called an upset in the ranking. Any ranking without upsets
is called a perfect ranking of T .

Thus, our goal should be to find a perfect ranking. But observe that our tournament contains
an “oriented triangle”:

A B

D

If we could find a perfect ranking of the tournament, then we would have A ranked higher
than B, B ranked higher than D, and D ranked higher than A. Clearly this is impossible. In
fact, any oriented cycle in a tournament will cause an upset.

Proposition 4. If a tournament T contains an oriented cycle, then it has no perfect ranking.

Proof. Consider an oriented cycle v1 → v2 → · · · → vk → v1 in the tournament. Thus in any
perfect ranking of T , v1 must come before v2, v2 must come before v3, and so on. Continuing,
we find that v1 must come before vk. But since vk → v1, vk must come before v1. This is a
contradiction. Hence T contains no perfect ranking.

This is quite discouraging. Maybe our goal was too optimistic? It remains to be seen
whether directed cycles are very common, or if they are rare. If it turns out that directed cycles
are common, we will need to find a new, less optimistic, goal.

Let us examine this issue a bit further.

Definition 5. A tournament T is called transitive if, whenver u → v and v → w, it follows
that u → w. We might also call such a tournament “consistent” since everyone is behaving in
a consistent way, without wacky upsets.

Theorem 6. Given a tournament T , the following statements are equivalent.

1. T has a perfect ranking.

2. T is transitive.

3. T contains no oriented cycle.

Before we prove this, we need to establish an important technical property of tournaments.
We say that a path in a graph G is a spanning path if it covers every vertex in the graph
(however, it may omit some edges).
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Lemma 7. Every tournament T possesses a directed spanning path.

Proof. We prove this by induction on the number of vertices n. If n = 2, then certainly our
tournament has a spanning path. Now suppose that every tournament on n − 1 vertices has
a spanning path, and consider an arbitrary tournament T on n vertices. If we delete some
arbitrary vertex v, then we are left with a tournament T ′ on n − 1 vertices, and by induction,
T ′ contains a spanning path v1 → v2 → · · · → vn−1.

Now consider the tournament T again. If v → v1 or vn−1 → v, then we are done since
vv1v2 · · · vn−1 or v1v2 · · · vn−1v is a spanning path, respectively. So suppose that v1 → v and
v → vn−1, and consider the smallest i such that v → vi. (Note that 1 < i ≤ n − 1.) Since i is
the smallest, we must have vi−1 → v, and then

v1v2 · · · vi−1vvi · · · vn−1

is a spanning path for T .

Now we can prove Theorem 6.

Proof. We will show that (1) ⇒ (2) ⇒ (3) ⇒ (1).

(1) ⇒ (2): Suppose that T has a perfect ranking, and consider vertices u, v, w with u → v

and u → w. We wish to show in this case that u → w. Since the ranking is perfect, u appears
before v and v appears before w, hence u appears before w. If we then had w → u, this would
be an upset, contradicting the fact that the ranking is perfect. Hence u → w.

(2) ⇒ (3): Suppose that T is transitive. We wish to show that T contains no oriented cycle.
We will assume the opposite, that T does have an oriented cycle. In this case, T must have
an oriented cycle C of minimum length, say v1v2v3 · · · vk. But since T is transitive and since
v1 → v2 and v2 → v3, we must have v1 → v3. Thus v1v3 · · · vk is an oriented cycle of shorter
length, contradicting the minimality of C. Hence T has no oriented cycles.

(3) ⇒ (1): First, suppose that T contains no oriented cycle. By the above lemma, T must
contain a spanning path, say v1v2 · · · vn. We claim that this path gives a perfect ranking. To
see this, suppose that we have an upset, say vj → vi for i < j. In this case, we get an oriented
cycle vivi+1 · · · vj−1vjvi, which is a contradiction. Hence the ranking has no upsets, and it is
perfect.

Okay, so we understand which graphs have perfect rankings. You will show on the homework
that the probability that a random tournament on n vertices has a perfect ranking becomes
vanishingly small as n gets large. So we must abandon our hopes of finding perfect rankings,
because they almost never exist!

How can we save ourselves? What would be a more reasonable goal? Maybe we should look
for rankings with a minimum number of upsets?

It turns out that this is a very difficult problem, and many people have suggested solutions,
but it is difficult to say mathematically which method of ranking a tournament is best. It all
depends what you mean by “best”.

3



I will describe one method that I find to be very reasonable. If you have a round-robin
ping-pong tournament this weekend, you are free to use this method.

The Kendall-Wei (1952,1955) method for ranking a tournament: Suppose that T is a

tournament on vertices {v1, . . . , vn}.

• Begin with the first strength vector w1 = (s1(1), s1(2), . . . , s1(n)), where s1(i) is the
number of vertices dominated by vertex vi.

• Define the second strength vector w2 = (s2(1), s2(2), . . . , s2(n)) by setting s2(i) equal to
the sum of the first strengths s1(j) for vertices vj dominated by vi. (This takes account
not only of how many people you defeated, but also how many people the people you
defeated defeated!)

• Define the third strength vector w3 = (s3(1), s3(2), . . . , s3(n)), where s3(i) is the sum of
the second strengths of the vertices that vi dominates.

• Continue in this way, to define the nth strength vector wn. If n is quite large, we expect
that wn will give us an accurate assessment of the relative strengths of the players in the
tournament.

However, computing wn for large n might take a while. And there is the issue of “how
large should we take n”? In practice, you might just go as far as you please. But it turns out
that there is a precise way to calculate the infinite limit limn→∞ wn without too much trouble
(although the proof is beyond the scope of this course):

Let M be the incidence matrix of the tournament T . That is, we let the (i, j)th entry of M

equal 1 when vi → vj , and let it equal 0 otherwise. Under certain fairly general conditions, M

will always have a largest positive eigenvalue λ with 1-dimensional eigenspace. In this case the
ultimate strength vector w∞ = limn→∞ wn is proportional to any λ-eigenvector of M .

For example, the incidence matrix for the tournament above is

M =

A B C D

A

B

C

D









0 1 1 0
0 0 0 1
0 1 0 1
1 0 0 0









.

The largest positive eigenvalue of M is λ ≈ 1.395336994 and the corresponding eigenvector (the
ultimate strength vector) is

w∞ ≈ (.3213357548, .1650444157, .2833272505, .2302925789).

(You’ll want to use a computer for this!) Thus, the Kendall-Wei method gives us the ranking
(A, C, D, B). Do you think this is a reasonable answer? Let’s just compare to what happens if
we compute only the first few steps.
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Consider again the tournament described above, and list the vertices in the order A, B, C, D,
just for convenience. The first strength vector is

w1 = (2, 1, 2, 1)

since A beats 2 players, B beats 1 player, C beats 2 players and D beats 1 player. This might
not give a very “good” ranking since it has contains a lot of ties, and each defeated opponent
contributes an equal amount to a player’s “score”. We would like to include information about
“how strong were the opponents that you defeated?”. So the second strength vector is

w2 = (3, 1, 2, 2).

A gets second strength 3 = 1 + 2 since A defeats B and C, who had first strengths 1 and 2,
respectively. B has second strength 1 since B only defeated D, who has first strength 1. The
second strength vector accounts for “how many opponents did the opponents that you defeated
defeat?”. To get the third strength vector, we sum the second strengths of defeated opponents.

w3 = (3, 2, 3, 3)

And continue for a little while:

w4 = (5, 3, 5, 3)

w5 = (8, 3, 6, 5)

w6 = (9, 5, 8, 8)

w7 = (13, 8, 13, 9)

w8 = (21, 9, 17, 13)

w9 = (26, 13, 22, 21)

w10 = (35, 21, 43, 26).

How well does the tenth strength vector w10 compare to the ultimate strength vector w∞? Since
we only care about “relative strengths”, we might as well rescale w10 so that the sum of its
entries is 1 (as in “there is 1 unit of strength to go around, and we must decide who gets how
much”):

w10

35 + 21 + 43 + 26
≈ (0.3017241379, .1810344828, .2931034483, .2241379310).

That’s pretty darn close to w∞ for only doing 10 steps, instead of infinitely many!
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