Catalan numbers, Math 4707, Spring 2021

The Catalan number sequence

$$C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, C_5 = 42, \dots,$$

with general formula $C_n = \frac{1}{n+1} \binom{2n}{n}$, and generating function $C(x) := \sum_{n=0} C_n x^n$ given by $C(x) = \frac{1-\sqrt{1-4x}}{2x}$, is ubiquitous in combinatorics.

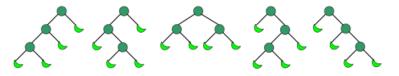
The Catalan numbers satisfy the fundamental recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}.$$

For each of the following possible definitions of C_n , explain why the fundamental recurrence holds:

1. $C_n :=$ number of triangulations of an n + 2-gon; the case $C_3 = 5$ corresponds to

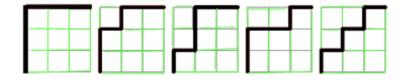
2. $C_n :=$ number of *binary trees* (each node either has either two children: a left and a right child; or has no children and is a "leaf") with n + 1leaves; the case $C_3 = 5$ corresponds to:



3. $C_n :=$ number of words of length 2n with n X's and n Y's such that every initial segment has at least as many X's as Y's (these are called *Dyck words*); the case $C_3 = 5$ corresponds to

For each of the following possible definitions of C_n , explain a bijection to one of the above definitions:

4. C_n := number of lattice paths from (0,0) to (n,n) with steps (0,1)and (1,0) staying on or above diagonal y = x (these are called *Dyck paths*); case $C_3 = 5$:



5. $C_n :=$ number of ways to fill a $2 \times n$ rectangle with the numbers 1, 2, ..., 2n increasing in rows and columns; case $C_3 = 5$:

1	2	3	1	2	4	1	2	5	1	3	4	1	3	5
4	5	6	3	5	6	3	4	6	2	5	6	2	4	6

6. $C_n :=$ number of ways to completely parenthesize n + 1 different factors; case $C_3 = 5$:

$$(((ab)c)d) \qquad ((a(bc))d) \qquad ((ab)(cd)) \qquad (a((bc)d)) \qquad (a(b(cd)))$$

7. $C_n :=$ number of ways for 2n people seated at a circular table to shake hands without crossing; case $C_3 = 5$:

