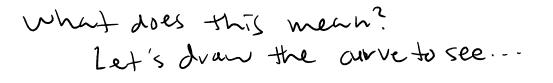
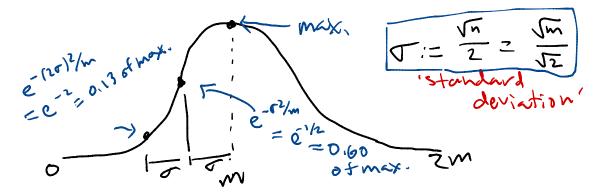
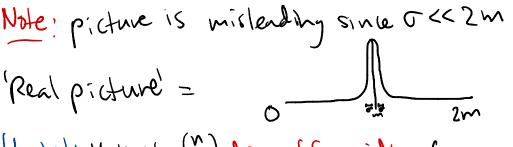
Most important pattern in Pascal's A is Pascal's identity: $\underline{Ihn} \begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n-1 \\ k \end{pmatrix} + \begin{pmatrix} n-1 \\ k-1 \end{pmatrix}$ Note: Let's you easily fill in Pascal's A! PS: Let's define a bijection figk-subsets 2 > {k-subsets } {k-1 - subsets } fight of En] 3 > { of En-17 } { of En-17 } $J \cdot \xi \text{ of } L^{n} J = \begin{cases} A & if n \notin A & (a & k-subset) \\ Of & D & Of & D \\ (A \cdot \xi n \xi) & if n \notin A & (a & k-i-subset) \\ Of & D & D & D \\ Of & D & D & D \\ (A \cdot \xi n \xi) & if n \notin A & (a & k-i-subset) \\ Of & D & D & D \\ (A \cdot \xi n \xi) & if n \notin A & (a & k-i-subset) \\ Of & D & D & D \\ (A \cdot \xi n \xi) & if n \notin A & (a & k-i-subset) \\ (A \cdot \xi n$ This exactly corresponds to Pascal's identity. B Rmk: we have a similar identity $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$ for stirling #'s of 2nd kind, W/a very similar bijective proof.

Math 4707: More Pascalistriangle and probability	2/3 chí.s 3+5 of LPV
Reminder: HW # 2 is due today!	
Last class we introduced Pascel's triangle of	(n):
and discussed various patterns in it, live	symmetry,
the sum/alternating sum of a row, and mos	t im portant,
Pascal's identity a b. We will di	iscuss
more patterns like this on the worksheet	for today.
But intoday's lecture, instead we're a	going to
talk about the large scale behavior of Pas	
and its connections to basic probability.	
material for today is mostly "cultural"; i.	e., 1
will not assess you on it. However, it i	s st:11
Very interesting + in portant.	

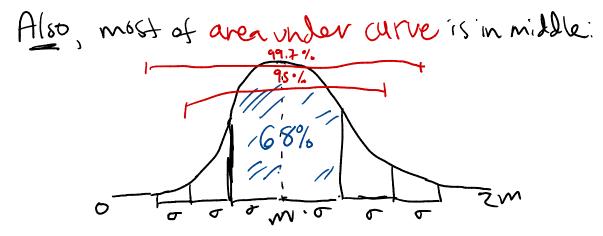
Q: What does the
$$n^{\frac{1}{2}}$$
 row of Pascal's A
voughly "book like" for big n?
To answer this, helpful to draw a histogram:
(2) 2
 $n^{\frac{1}{2}}$ $n^{\frac{3}{2}}$ $n^{\frac{$







Upshot: Values ("k) drop off rapidly from middle



 $\frac{\text{Lemma}}{e^{t^2/(m-t+1)}} \leq \binom{2m}{m-t} / \binom{2m}{m} \leq \frac{t^2/(m-t+1)}{e^{t^2/(m-t+1)}} \leq \frac{2m}{m-t} = \frac{t^2}{m-t}$ Lemma For $0 \le k \le n$, and $c := \binom{2m}{k} / \binom{2m}{m}$, $\binom{2m}{0} + \binom{2m}{1} + \cdots + \binom{2m}{k-1} < \frac{c}{2} \cdot 2^{2m}$. total area under curve = sum of 2mtb vow of Δ eq. m = 500 then $\binom{1000}{448} / \binom{1000}{500} < 0.01$ Thus sum of 1st 447 (1000) < 0.5% of total By symmetry, lust 447 (1000) also < 0.5% total

So middle 107 terms account for >99% of sum of the 1000th vow of Phrcul's A!

Pf of these lemmas: Skipped. Based on (k)= "! + manipulating inequalities, taking logarithms, Stirting's approx, etc. \mathbb{N}

The probability of event AES is SiEA If we have uniform differ, this is #A #5. 2.2. $Pr(v_{\delta}|l \ge 3) = \frac{\#\{23, 4, 5, 63\}}{\#\{2, 1^2, 3, 4, 5, 63\}}$ = 4 Independence: Two crents A, BSS are independent if $Pr(A \cap B) = Pr(A) \cdot Pr(B)$. Roughy, A+Bare unvelopted...

Do we see why uniform distr. on EHH, HT, TH, TT? = "flipping two independent fair coins"? Q: What is the probability of getting exactly k heads when flipping n coins?

A: $\binom{n}{k}$ = fraction of area under Pascal's Δ $\frac{2^n}{2}$ curve at position K

Let's see this in action w/ Galton board ... Q: If we do 1000 winflips, what fraction of heads should we expect? Thm (Law of Large numbers) For any E>D, $Pr(fraction of heads in n coinflips) \rightarrow 1$ is between $\frac{1}{2} - \epsilon$ and $\frac{1}{2} + \epsilon$ as $n \rightarrow \infty$. 1.e., in 1000 winflips, should expect Very close to 50% heads! Et: Recall picture of nth row of Parcal's A: 0 n/2 n All the mass is very close to middle = 50% Leads D

A more precise result called the Central limit theorem says that as n-100, histogram of $\frac{\sqrt{n}\left(\frac{1}{n}\left(\frac{\# \text{ of heads}}{\ln n + \text{lips}}\right) - \frac{1}{2}\right) \rightarrow \frac{2}{\sqrt{2\pi}} e^{-2x^2}$ rescale by In to see 'fluctuations' from average This just repeats what we saw earlier of Pascal's A. So what? Significance of LLN+CLT is that they apply not just to coinflips, but any fine we take average at independent vardom variables (2.g., dice rolling, error of scientific mensurement, etc.) They explain: • why the scientific method works . why polling works, etc. and why (in 'fairy tale land' at lenst) the Gaussian curve emerges as a universal limit (e.g., human height distributions, etc.)

Now let's take a 5 min. break, and when we come back we Can work on a worksheet on more combinatorial patterns in Pascal's A in our breakout groups (this worksheet is not really related to LLN/CLT...)