Math 4707: Catalan numbers + more generating fuir 2/10 not in textbook! Reminder: HW#2 has been posted, due in one week, on 2/17 Today we'll continue talking a bout famius Conbinatorial sequences of this by introducing the Catalan numbers. Very popular topic. e.g., R. Stanley has a book culled "Catalan humbers" with = 200 interpretations!!! First let's go over something from last class's worksheet Recall from calculus... Thm (Taylor Series) For a 'reasonable' function f: IR -> IR, have $f(x) = \sum_{k=1}^{\infty} f^{(k)}(o) \frac{x^{k}}{k!}$ where f^(K) = Kth derivative of f.

Let's take
$$f(x) = (1+x)^n$$
, where $n \in \mathbb{R}$ is any real number
e.g. $(1+x)^{-3} = \frac{1}{(1+x)^n}$, $(1+x)^{\frac{1}{2}} = 5(1+7)$, $(1+x)^{\frac{1}{2}} = ???$
Remember from calculus that $f'(x) = n((+x)^{n-1})$, and
 $f^{(k)}(x) = n \cdot (n-1) \cdots (n-(k-1))(1+x)^{n-k}$, so
Then (Generalized binomial theorem)
tor any $n \in \mathbb{R}$, $(1+x)^n = \sum_{k=0}^{\infty} \binom{n}{k} \times k$, where
 $\binom{n}{k} := \frac{n(n-1)\cdots(n-(k-1))}{k!}$ generalized des.
 d binomial coess. r .
Not $F: |f n \in I|N$ is a nonregative integer, then
 $\binom{n}{k} := 0$ when $k > n$, so we get as usual
 $(1+x)^n = \sum_{k=0}^{\infty} \binom{n}{k!} \times k$
On the worksheet, it as keed you to consider taking
 n to be a negative integer, e.g. $(1+x)^{\frac{n}{2}} = \frac{1}{(1+x)^n}$.

Rmk The g.f.'s we discussed earlier were all rational, i.e., ratios P(x) of polynomials P,Q. (1-4x) = JI-4x is not rational (it's algebraic). Now let's consider a new counting problem... Cn := # triangulations of a (n+2) - gon. $2 \Delta 3$ $C_{1} = 1$ $C_2 = 2$ 2 3 3 2 3C3 = 5 $C_{4} = 14^{10} \cdot \frac{14}{3} \cdot \frac{14}{4} \cdot \frac{14}{5} \cdot \frac{14}{5} \cdot \frac{14}{5} \cdot \frac{1}{5} \cdot \frac$ C5=42 ... no way I'm drawing those! Also reasonable to define Co= 1 -----

The Cn are called Catalon numbers.
This (Fundamental recurrence)
For
$$n\geq 1$$
, $C_n = \sum_{k=0}^{n-1} C_k C_{(n-1)-k}$.

Skory, but what's the convection to
$$q \cdot f \cdot s$$
?...
Algebra says that if $A(x) = Ea_n x^n$ and $B(x) = \sum b_n x^n$
then $A(x) B(x) = \sum_{n=0}^{\infty} (\frac{2}{n} a_n b_{n-x}) x^n$.
So the fund recurrence says something very
hice about the Catalannuber 9.5...

$$C(x) = \sum_{n=0}^{\infty} C_n x^n$$

namely, 8 $(x)(x) = \sum_{k=0}^{\infty} (k(n-k) x^{n})$ $(4md.rec.) = \sum_{n=0}^{\infty} (ne) x^n = \sum_{n=0}^{\infty} (n x^{n-1})$ nzi $=\frac{1}{x}(C(x)-1)$ $x C(x)^2 - (cx) + 1 = 0$ 1. e., $\Rightarrow C(X) = 1 \pm \sqrt{1-4X}$ by quad. form.

Remember,

$$(1-4x)^{-1/2} = \sum_{n=0}^{\infty} {\binom{2n}{n}} x^n$$

 $\int (1-4x)^{1/2} = (onst. + \sum_{n=0}^{\infty} \frac{1}{n+1} {\binom{2n}{n}} x^{n+1}$
 $-\frac{1}{2} {(1-4x)^{1/2}} = (onst. = -\frac{1}{2}$
 $\frac{1}{2} - \frac{1}{2} \sqrt{1-4x} = \sum_{n=0}^{\infty} \frac{1}{n+1} {\binom{2n}{n}} x^{n+1}$
 $\Rightarrow \frac{1-\sqrt{1-4x}}{2x} = \sum_{n=0}^{\infty} \frac{1}{n+1} {\binom{2n}{n}} x^n$
 $\sum_{n=0}^{\infty} \frac{1}{n+1} {\binom{2n}{n}} x^n$
 $in = \frac{1}{n+1} {\binom{2n}{n}}$
 $in = \frac{1}{2} {\binom{8}{4}} = \frac{1}{2} \cdot 70 = 14$
 $= 4t + triang. of hexagon$

.

So with generating functions we were able casily to find an explicit formula for Catalan numbers.

There are other ways to prove He formula Cn= 1/(2n) (can you find a bijective proof???) but... this proof using g.f.'s is probably the "easiest."

Shows power of generating functions!

Now let's take a break...

And when we come back we can work in breakout groups on the worksheet, which shows many more counting problems where the answer is the Catalan #15!