Partitions, Math 4707, Spring 2021

An *(integer)* partition $\lambda = (\lambda_1 \ge \lambda_2 \ge \lambda_3...)$ is a sequence of weakly decreasing nonnegative integers which is eventually zero. The size of λ is $|\lambda| := \lambda_1 + \lambda_2 + ...$ The largest part of λ is λ_1 , and the length $\ell(\lambda)$ of λ is the number of (nonzero) parts of λ , i.e., $\ell(\lambda) := \max\{i: \lambda_i \neq 0\}$.

The conjugate λ' of λ is the partition whose Young diagram is obtained from that of λ by reflecting across the main diagonal:

- 1. Show that the generating function for partitions with largest part at most k is $\sum_{\lambda: \lambda_1 \leq k} q^{|\lambda|} = \prod_{i=1}^k \frac{1}{1-q^i}$.
- 2. Show that the generating function for partitions with length at most k is $\sum_{\lambda: \ell(\lambda) \leq k} q^{|\lambda|} = \prod_{i=1}^{k} \frac{1}{1-q^{i}}$ (hint: use the conjugate).
- 3. Show that the number of partitions λ with largest part at most a and length at most b is $\binom{a+b}{b}$. Hint: think about the following picture (which explains the case a = 4, b = 3):

4. Let $\lambda = (\lambda_1, \lambda_2, ...)$ be a partition and $\lambda' = (\lambda'_1, \lambda'_2, ...)$ its conjugate. Show that $\sum_{i\geq 1} (i-1) \cdot \lambda_i = \sum_{i\geq 1} {\lambda'_i \choose 2}$. Hint: think about this picture:

5. Describe the partition λ of size $|\lambda| = n$ which maximizes $\min(\lambda_1, \ell(\lambda))$.