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The rank and cranks

Submitted by Dennis Stanton

The Ramanujan congruences for the integer partition function   (see [1]) are

         

Dyson’s rank [6] of an integer partition 

(so that the rank is the largest part minus the number of parts) proves the Ramanujan
congruences

by considering the rank modulo 5 and 7.

OPAC-001. Find a 5-cycle which provides an explicit bijection for the rank classes modulo 5,
and find a 7-cycle for the rank classes modulo 7.

The generating function for the rank polynomial is known to be

The rank generating function   for partitions of   does have an
explicit factor of 5, but not positively. For example

where   is an irreducible polynomial of degree 22 which has negative coeffcients.
For an explicit 5-cycle which would be a rank class bijection, one would expect the
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factor   times a positive Laurent polynomial in  . Here is a
conjectured modification that does this.

Definition. For   let

OPAC-002. For  , show that the following are non-negative Laurent polynomials in  :

This conjecture says that the rank definition only needs to be changed for   to
have the “correct” symmetry. I do not know a modification which will also work
modulo 11. Frank Garvan has verified OPAC-002 for   and 

.

The Andrew-Garvan [2] crank of a partition   is

where   is the number of parts of   which are greater than the number of  ‘s of  .
For example

The generating function of the AGcrank over all partitions of   is   For
example

The generating function for the AGcrank polynomial is known to be (after modifying 
)

OPAC-003. Show
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Frank Garvan has verified OPAC-003 for 

Ramanujan factored the first 21 AGcrank polynomials,  , see the
paper of Berndt, Chan, Chan and Liaw [5, p. 12]. Ramanujan found the factor 

 for   but the other factors did not
always have positive coefficients. For example Ramanujan had

where

A modified version of the AGcrank works for modulo 5, 7, and 11, with only the values
at partitions   changed.

Definition. For   let

OPAC-004. Show that the following are non-negative Laurent polynomials in 

Frank Garvan has verified OPAC-004 for 

The 5corecrank (see [7]) may be defined from the integer parameters 
 involved in the 5-core of a partition  . Its generating function for

partitions of   is

where
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Bijections for the core crank classes are known [7] for   and  .

Frank Garvan noted the following version of the previous conjectures holds for the
5corecrank for   and  , see [3].

OPAC-005. Show that the following are non-negative Laurent polynomials in 

Bringmann, Ono, and Rolen [8] have proven the first statement.
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Sorting via chip-firing

Submitted by James Propp

This post concerns various dynamical systems whose states are configurations of
labeled chips on the one-dimensional integer lattice. In these configurations, multiple
chips can occupy the same site on the lattice (and the “relative” position of chips at the
same site is irrelevant).

The main result of [3] is the following theorem:

Theorem. Put chips labeled   through   at site 0 on the integer lattice, and repeatedly apply
moves of the form

If chips   and   are both at site   with  , then slide chip   to site   and chip 
 to site 

until no further moves can be performed. Then if  , the final configuration of
the chips is independent of the moves that were made, and in particular, the chips are sorted in
the sense that if   then chip   is to the left of chip  .

Note that if  , there can be multiple final configurations and the chips
need not end up sorted.

The following conjectures are variants of the above theorem.

OPAC-006. Put chips labeled   through   at site 0 on the integer lattice, and repeatedly
apply moves of the form

If chips  ,   and   are all at site   with  , then slide chip   to site 
 and chip   to site 

until no further moves can be performed. Show that if  , then the final
configuration of the chips is independent of the moves that were made, and in particular, the
chips are weakly sorted in the sense that if   then chip   is not to the right of chip  .

Note: This is a special case of Conjecture 22 from [3].

OPAC-007. Put chips labeled   through   at site 0 on the integer lattice, and repeatedly
apply moves of the form
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If chips  ,  ,   and   are all at site   with  , then slide chips 
 and   to site   and chips   and   to site 

until no further moves can be performed. Show that if  , then the final
configuration of the chips is independent of the moves that were made, and in particular, the
chips are weakly sorted.

Note: This is a special case of Conjecture 25 from [3].

It is possible that the methods of that paper could with effort be made to solve these
problems. However, I would much rather see a new and simpler approach (perhaps
using the connection to root systems explored in [1] and [2]).
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On the cohomology of
the Grassmannian

Submitted by Victor Reiner

The  -binomial coefficient is defined as

where  , with  . It has
many interpretations: combinatorial, algebraic, and geometric. For example, it is
the Hilbert series for a graded ring that we will call here  , the cohomology ring with
rational coefficients for the Grassmannian   of  -planes in  , with grading
rescaled by half:

We know plenty about the structure of this ring. For example, it can be presented as the
quotient of the ring of symmetric functions in infinitely many variables by the  -span of
all Schur functions   for which   does not lie in a   rectangle  . Thus it has a  -
basis given by   and its multiplicative structure constants in  ,
are the well-understood Littlewood-Richardson coefficients, intepreting   if  .
On the other hand, it also has at least two simple presentations via generators and
relations:

where in the second line,   can be computed via (dual) Jacobi-Trudi determinants:
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Since  , we will assume from now on that  . The open problem here is to
understand the Hilbert series for a tower of graded subalgebras

where   is the  -subalgebra of   generated by all elements of degree at most  ;
that is, the subalgebra generated by  . Note for  , it is silly, as 
, so  .

The   case is less silly. Here it turns out that

It is no surprise that   would be a truncated polynomial algebra in the generator  .
It was less clear why the last nonvanishing power would be  , matching the top
nonvanishing degree in  . This follows either from

a direct calculation with the Pieri formula showing   where   is the
(nonzero!) number of standard Young tableaux of shape  , or

by a special case of the Hard Lefschetz Theorem, since   represents the cohomology
class dual to a hyperplane section of the the smooth variety   in its
Plücker embedding.

As a consequence,

or equivalently, the filtration quotient   has Hilbert series

For small   one can compute   via computer algebra, e.g.,
Macaulay2. One can first find a presentation for   in terms of the generators 

, using Gröbner basis calculations that eliminate the variables 
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 from the above presentations. Given such a presentation, computer
algebra lets one then compute the Hilbert series.

After doing this for small  , one quickly notices that the Hilbert series for the
filtration quotients   are not only divisible by  , as forced by their

definition, but also divisible by  , which is not a priori obvious. Dividing these

factors out leads to this conjecture.

OPAC-008. For integers   and   with  , does the following hold?

For example, when  , OPAC-008 predicts what we saw above:

Geanina Tudose and I were led to OPAC-008 after realizing that one of its much weaker
implications [2, Conjecture 4] about   would greatly simplify the proof of
the following interesting result of Hoffman, on graded endomorphisms of the
cohomology ring  .

Theorem (Hoffmann [1]). Let   be a graded algebra endomorphism   of   that scales 
 via some nonzero   in  . If  , then   scales each component   via  . If  , then 
 has the form just described, or its composition with the involution swapping   for all  .

This theorem was conjectured by O’Neill without the assumption that   is nonzero,
motivated by a topological application: assuming it, one can easily apply the Lefschetz
fixed point theorem to show   has the fixed point property (i.e. every
continuous self-map has a fixed point) if and only if   and   is even.

In [2], one finds more background on the OPAC-008, including verification of the case 
, and how the conjecture would shorten Hoffman’s proof from ten pages to two

pages. Here are a few more remarks.

Remark 1. Naming the inner sum in OPAC-008 as
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for  , one can check that it is defined by this recurrence

and initial conditions  . Thus   is a  -analogue of the
binomial coefficient   which depends on  , and has a different  -Pascal recurrence than

that of  .

Remark 2. One might approach OPAC-008 by finding  -bases of   that respect the
filtration by  , through Gröbner basis calculations with a lexicographic term order
with  , and understanding the structure of the standard monomials. We
have so far failed to make this work!

Remark 3. Recall that   is the quotient of the ring of symmetric functions   by a
certain ideal, and   is the subalgebra of   generated by its degrees up to  . The 

-Schur functions give a  -basis for the subalgebra   of   generated by its degrees
up to  . Perhaps there is a convenient subset of  -Schur functions, for varying values
of  , whose images in   give a  -basis respecting the filtration by the  ?

Remark 4.  It is well-known how to generalize the cohomology ring 
 in many directions: to other flavors of cohomology

(quantum, equivariant, etc.), to other partial flag manifolds in type  , and to other Lie
types. Perhaps one should approach OPAC-008 by first generalizing it in one of these
directions?
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The Schur cone and the cone of
log concavity

Submitted by Dennis White

Let   be the cone generated by products (homogeneous of degree  ) of Schur
functions  , where  . That is,   is the set of all non-negative linear
combinations of vectors of the form

where   and where 

We call this cone the  -Schur cone of degree  . Our goal is to find the extreme vectors of
this cone. That is, we wish to find products of Schur functions as above which cannot be
written as a positive linear combinations of other products of that form. For instance,
since  , we know   is not extreme in  .

We can dispense with two easy cases immediately. When  , since  ,   is then
the cone generated by  ,  . Since the   are a basis, none can be written as a linear
combination of the others, so the  ,  , will be extreme.

When  ,   is the cone generated by products of Schur functions. But by the
Littlewood-Richardson rule, products of Schur functions are positive linear combinations
of Schur functions, so  ,   will be extreme.

When  , the Jacobi-Trudi identity says the cone is generated by products of the form

.

We therefore call the 2-Schur cone of degree   the cone of log-concavity. As illustration, 
 has   extreme vectors, which are

 

 

Let   denote the partitions with   parts. A pair of partitions   in   is said to
be interlaced if it satisfies one of the following conditions:
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1. ,  , with  ;
2. ,  , with  ;
3. ,  .

If   is not interlaced, it is said to be nested. These definitions differ somewhat from
what we might usually call nested and interlaced because of the inequalities and
partitions with one part.

Suppose   is a collection of partitions in  , where  . We
write  . These   are the generating vectors of the cone  .

We say   is nested if all pairs   in   are nested.

Theorem. If   is not nested, then   is not extreme.

Proof     If   is not nested, then at least one pair   in   is interlaced and so satisfies
one of the three interlacing conditions. Suppose that  , 

, with  . This implies   and 
. Therefore, by Jacobi-Trudi,  .

The other two cases follow from similar identities. See [2] for details.   

Theorem. If   is nested and all the parts of   are distinct, then   is extreme.

The proof of this last theorem uses the Littlewood-Richardson rule in a non-trivial way
and relies on Farkas’ Lemma [1]. Farkas’ Lemma states that a vector is extreme if and only
if there is a hyperplane which separates it from all the other generating vectors. See [2] for
details.

OPAC-009. Show that if   is nested then   is extreme.

Further information regarding this conjecture can be found in [2].

OPAC-010. Describe the extreme vectors of  .
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Matrix counting over finite fields

Submitted by Joel Brewster Lewis

Let   be positive integers, and   a prime power. Given a subset   of the
discrete grid  , one may define the matrix count 
 to be the number of rank-  matrices over the finite field of order   whose entries on 
 are equal to  . This question concerns the properties of this matrix count as a function
of  .

A first basic property is that the integer   is always divisible by  . (The
idea of the proof is to consider the orbits formed when rescaling the rows by nonzero
factors.) Consequently, it is convenient to define the reduced (or projective) matrix count 

.

One motivation for the study of the matrix counts comes from the classical enumerative
combinatorics of rook theory: the rook number   is the number of placements of 
 nonattacking rooks on   so that none of them lies on  .
(Two rooks are attacking if they lie in the same row or same column, so this may
equivalently be described as the number of   partial permutation matrices whose
support is disjoint from  .) Then for any prime power   one has

(see [4, Prop 5.1]) and so one may think of   as a  -analogue of the rook
number  .

Depending on the diagram  , the reduced rook count may be more or less nice as a
function of  . When   is a Ferrers board (i.e., the diagram of an integer partition),
Haglund [2, Thm 1] showed that the function   is actually a polynomial in  ,
with positive integer coefficients, and related to the  -rook number of Garsia and Remmel
[1]. However, when   is arbitrary, the function   need not be a polynomial
function of   [7, Section 8.1], and in fact may be exceptionally complicated. It is natural
to explore this boundary: which diagrams   give “nice” counting functions  ?

One natural way to extend Ferrers boards is to skew shapes, the set difference of two
Ferrers boards. In fact, both are special cases of inversion diagrams of
permutations (appearing in the literature under many names, including Rothe diagram):
given a permutation   in one-line notation, the inversion diagram
contains the box   whenever   and  . Then any Ferrers board   is
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(for some sufficiently large  ) the inversion diagram of some  -permutation, and the  -
permutations whose inversion diagrams are Ferrers boards are exactly those that avoid
the permutation pattern  , i.e., those for which there do not exist   with 

. Similarly, every skew shape is (after rearranging rows and columns;
for some sufficiently large  ) the inversion diagram of a  -avoiding permutation. In
[6, Cor. 4.6], it was shown that for any permutation   with inversion diagram  , the
matrix count   is a polynomial function of   with integer coefficients; but
there exist permutations for which some of the coefficients are negative.

OPAC-011. Prove that if   is a  -avoiding permutation, then the matrix count 
 is a polynomial in   with nonnegative integer coefficients.

This is essentially Conjecture 6.9 of [6]. It has been checked for all  -avoiding
permutations of size   or less.

One particular special case is worth mentioning. When   is even, the permutation 
 avoids  ; its diagram consists of exactly   of the 

 diagonal boxes in  . In this case, we have an explicit
formula for  : define the standard  -number 
 and  -factorial  ; then one has 

 for some integer   [6, Section 6.3].

OPAC-012. The sum   is manifestly a polynomial with integer
coefficients; prove that in fact the coefficients are nonnegative integers.

OPAC-012 is essentially Conjecture 6.8 of [6]. It is easy to verify on a computer for 
. Ideally, one would hope for a solution method that could be applied to other

cases of OPAC-011, as well.

For more open questions along these lines, see [3] and [5].
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Descents and cyclic descents

Submitted by Ron M. Adin and Yuval Roichman

The descent set of a permutation   in the symmetric group   on 
 is

,

whereas its cyclic descent set is

,

with the convention  ; see, e.g., [3, 4].

The descent set of a standard Young tableau (SYT)   is

.

For a set   let   and  . The Robinson-
Schensted correspondence implies

,

where the first summation in the RHS is over all partitions of  , and   denotes
the set of all SYT of shape  .

OPAC-013. Find a cyclic analogue of Equation (*).

As a first step, note that Equation (*) implies

.

Definition [1]. Let  , and let   be any finite set equipped with a descent map 
. Consider the cyclic shift  , mapping   to 

, extended naturally to  . A cyclic extension of the descent map   is a
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pair  , where   is a map and   is a bijection,
satisfying the following axioms: for all  ,

(extension)      ,
(equivariance)      ,
(non-Escher)      .

For example, letting   be the symmetric group, the map   defined
above and the rotation 
 determine a cyclic extension of the map   defined above.

A cyclic extension of the tableaux descent map   defined above, for SYT of
rectangular shapes, was introduced in [9]. In fact, this descent map on   has
a cyclic extension if and only if the skew shape   is not a connected ribbon [1,
Theorem 1.1]; a constructive proof of this result was recently given in [7]. All cyclic
extensions of   on   share the same distribution of  .

The following cyclic analogue of (**) was proved in [1, Theorem 1.2]:

OPAC-014. Find a Robinson-Schensted-style bijective proof of Equation (***).

By a classical theorem of Gessel and Reutenauer [5, Theorem 2.1], there exists a
collection of non-negative integers   such that for every conjugacy class 

 of type   in 

.

OPAC-015. Find a bijective proof of Equation (†).

A bijective proof of a cyclic extension of Equation (†), like the one given in [6, Theorem
6.2], is also desired.

Thrall [11] asked for a description of the coefficients of in Equation (†); for recent
discussions see, e.g., [8, 2, 10]. Particularly appealing is a combinatorial interpretation
of   as the cardinality of a nice set of objects. This has been done in some special
cases – for example, when   is a hook-shaped partition:
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.

OPAC-016. For which partitions   is the sequence   unimodal?

It is known that this sequence is unimodal for  , and conjecturally the same
holds for all rectangular shapes  ; see [6].

Unlike the full symmetric group, when restricted to a general conjugacy class the
definition of   given above does not yield a cyclic extension of  . However,
the following holds.

Theorem [6, Theorem 1.4]. The descent map   on a conjugacy class   of   has a cyclic
extension   if and only if the partition   is not of of the form   for a square-free  .

The proof involves higher Lie characters and does not provide an explicit description of
the extension.

OPAC-017. Find an explicit combinatorial description for the cyclic extension of   on a
conjugacy class of  , whenever such an extension exists.
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Root polytope projections

Submitted by Sam Hopkins

Let   be a crystallographic root system in an Euclidean vector space   with inner
product  . For any subspace   let   denote the orthogonal (with
respect to  ) projection. We call a nonzero subspace   a  -subspace if 

 spans  . In this case   is a (crystallographic) root system in  .

Recall that the poltyope  , which is the convex hull of all the roots, is
called the root polytope of   (see, e.g., [1]). Let   be a  -subspace. Define 

 to be the minimal   for which

In other words,   is how much we need to dilate the root polytope of   by
to contain the projection of the root polytope of  .

Example. Let   be   with its standard orthonormal basis  . Let

i.e.,  . Let us use the notation

Let  . Note that   is the subspace orthogonal to 
. Thus for instance we can compute

In fact, the projection

consist of 14 points. On the other hand, it is easy to see that
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Thus   is a rhombic dodecahedron, and   is
an octahedron inscribed inside this rhombic dodecahedron. So  .

In [2, Lemma 2.10] it is shown that   (and this exact value 2 turns out to be
important for applications in that paper). However, the proof there unfortunately
ultimately relies on a case-by-case analysis, leading to the following open problem:

OPAC-018. Prove in a uniform way (i.e., without relying on the classification of root systems)
that  .

Let   be the max of   over all  -subspaces  . It turns out that   can
get arbitrarily close to 2. Indeed   is on the order of   (see [2,
Table 8]). The irreducible root system which minimizes   is 

 for which this quantity is equal to  .

OPAC-019. Give a root system-theoretic interpretation of   or   (e.g., in terms of
other fundamental invariants like the rank of the root system, the Coxeter number, the degrees,
the index of connection, et cetera).
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The restriction problem

Submitted by Mike Zabrocki

A representation of   is a homomorphism   from   to  . The
value of   is the dimension of the representation.

Up to isomorphism, there is one irreducible polynomial   representation for
each partition   with the length of   less or equal to  . The character of that irreducible
representation is the Schur function   indexed by the partition  .
The dimension of that representation is the number of column strict tableaux of shape 
 with entries in  .

Since the permutation matrices are a natural subgroup of  , when an irreducible 
 representation is restricted from   to   it decomposes as a direct sum

of irreducible representations.

The restriction problem is the following:

OPAC-020. Find a combinatorial description of the decomposition of the irreducible 
 module indexed by the partition   into symmetric group  -irreducibles.

This problem has a very long history, but generally very few people publish partial
progress or failed attempts so there is very little written about it after the 1980’s beyond
special cases.

To determine how a   irreducible decomposes into   irreducibles we can use
the character   of the irreducible   module and its
evaluation at eigenvalues of permutation matrices  . Let   be a partition
of   and   be the eigenvalues of a permutation matrix of cycle
structure   (up to reordering, this list only depends on the cycle structure).

If we evaluate the symmetric function   at the eigenvalues 
, this is the value of the   character at a permutation of cycle

structure  .

Representation theory provides a formula for the multiplicity for a symmetric group
irreducible indexed by   (where   is a partition of   and the character of this
irreducible is denoted  ). It is equal to
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where the sum is over all partitions   of  .

Computing a few examples of this formula should indicate why it is not a particularly
satisfactory answer beyond as a means of arriving at a numerical value. Littlewood
[2, 9] showed in the 50’s that the multiplicity can be computed using the operation of
plethysm:

This is an advance in the problem, but recasts the solution of one problem in terms of
another for which we don’t have a combinatorial formula.

I first became interested in this problem in the early 2000’s because, from time to time, I
would encounter a module for which a formula for the   character was well
known, but the symmetric group module structure was not. Then in 2016, Rosa Orellana
and I [5] found a basis of the symmetric functions that are the the characters of the
symmetric group as permutation matrices   in the same way that the
Schur functions are characters of  . That, is there is a basis   (and one could
take the following formula as a definition of this basis) such that for all   sufficiently
large,

Then, for   a partition of  , we have  .

For each partition  , following symmetric function encodes all of the values of the
symmetric group character of this representation:

where the sum is over all   partitions of  . An answer to the restriction problem would
provide a Schur expansion of this expression as a symmetric function of degree  . Note
that if  , then  .

Programs for computing data are easily accessible in Sage [7, 8] through the ring of
symmetric functions. For instance, the following code:

 sage: s = SymmetricFunctions(QQ).schur()
 sage: s[3].character_to_frobenius_image(4)
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s[2, 1, 1] + s[2, 2] + 4*s[3, 1] + 3*s[4]
computes the Schur expansion of   by evaluating the character 

 at the eigenvalues of permutation matrices and computing the
Schur expansion of that expression.

In the case when  , we have the following, which should be a special case of
what the answer might look like in general:

Proposition. (Reformulation of [1]; see Exercise 7.73 of [10]; MacMahon’s Master Theorem [4]
can be used to derive this.) The coefficient of the Schur function   in   (where   is a
partition of  ) is equal to the coefficient of   in the Schur function evaluation 

.
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A localized version of
Greene’s theorem

Submitted by Joel Brewster Lewis

Here is one collection of permutation statistics associated to a permutation   in the
symmetric group  , viewed as a sequence containing each element of   exactly
once: for any  , let   be the maximum size of the disjoint union of   increasing
subsequences of  . For example, if  , then  ,   (witnessed
uniquely by the subsequences  ),   (witnessed uniquely by the pair of
subsequences  ), and   for all  . Similarly, one can define a second
collection   of permutation statistics by instead taking decreasing subsequences; with 

 one has  ,  ,  ,  , and   for all  . The
following paraphrase of a famous theorem of Greene explains how these sequences are
related to each other.

Theorem (Greene [1, Thm. 3.1]). Let   be a permutation in  , with  ,   as above. For 
, let   and  . Then the sequences   and 

 are weakly decreasing sequences of nonnegative integers with sum   (that is,
they are integer partitions of  ); in fact, they are conjugate partitions, in the sense that   is equal
to the number of parts of   of size larger than or equal to  , and vice-versa.

Of course the excitement of the theorem is not just that   and   are any pair of conjugate
partitions, but that they are a particularly meaningful pair:   is exactly the shape of the
standard Young tableau associated to   by the Robinson-Schensted correspondence.

We now describe a “localized” version of the quantities   and  .

An ascent in a sequence   is an index   such that  . Let 

 denote the number of ascents of  , and let  .

Given a permutation   in the symmetric group  , define

where the maximum is taken over disjoint subsequences   of  . For example, with 
, one has  ,  ,   (one can take

subsequences   and  ), and   for all   (one can take subsequences  , 
,  , among many other options). On the other hand, for a sequence  , define   to

be the longest decreasing subsequence of  , and define

26



where the maximum is taken over ways of writing   as a concatenation   of
subsequences (now obliged to be consecutive). For example, with  , one
has  ,  ,   (witnessed by  , among other
divisions),   (witnessed by  ) and   for   (witnessed by 

).

The following theorem shows that these localized versions are again closely related.

Theorem (Lewis–Lyu–Pylyavskyy–Sen [3, Lem. 2.1]). Let   be a permutation in  , with  , 
 as above. For  , let   and  . Then the sequences 

 and   are weakly decreasing sequences of nonnegative
integers with sum   (that is, they are integer partitions of  ); in fact, they are conjugate partitions,
in the sense that   is equal to the number of parts of   of size larger than or equal to  , and vice-
versa.

Again, the excitement of the theorem has something to do with the specific meaning of the
partition. In this case,   is the soliton partition describing the long-term behavior of
a multicolor box-ball system (BBS) initialized with one ball in each color  ,
arranged according to  . Here the BBS is a dynamical system consisting of balls in an
infinite strip; balls take turns jumping to the first available cell, beginning with the largest-
numbered ball. For example, using  ‘s to denote empty cells and beginning with the initial
configuration  , one BBS move (in which all balls jump once, starting with
ball   and ending with ball  ) results in the new position  . A second
move produces the configuration  , and a third move produces the
configuration  . At every subsequent time-step, the three balls 

 advance three steps to the right, the two pairs   and   advance two steps to the
right, and the singleton   advances one step to the right. These unchanging sequences are
the solitons, and the soliton partition   records their length. Not only does this
partition equal  , but the proof of the above theorem uses the box-ball dynamics in an
essential way, by suitably interpreting the statistics   and   for more general BBS
configurations, showing that they are preserved under a step of the system, and showing
that they give conjugate partitions once the system has decomposed into solitons.

OPAC-021. Give a direct proof of the above theorem concerning   and   that stays inside the
realm of permutation combinatorics (i.e., not using the full machinery of the box-ball system).

(It is not difficult but also not trivial to prove that   is the number of positive parts of 
 and vice-versa. It is also not too hard to show an inequality between   and the conjugate
of   in dominance order.)

Greene’s invariants  ,   may be defined more generally for any finite poset  , by
considering maximum collections of chains and antichains [2]. These are called the Greene-
Kleitman invariants of the poset. (One recovers the permutation case by considering a
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permutation as a certain poset of dimension 2.) It is natural to ask the same for the
localized versions.

OPAC-022. Is there a “localized” version of the Greene-Kleitman invariants that specializes to the
quantities  ,   in some case naturally associated to permutations?
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Descent sets for tensor powers

Submitted by Bruce W. Westbury

Let   be a standard tableau of size  . The descent set of  ,  , is the subset of 
 consisting of those   for which   appears in a lower

row than  .

For each subset  , we have a fundamental quasisymmetric function  .
(See [5, Ch. 7] for background on symmetric and quasisymmetric functions.) A basic fact
is that the combinatorics of descents gives the quasisymmetric expansions of the Schur
functions. Let   be the Schur function associated to the partition  . Then, for all
partitions  , we have the expansion

Let   be a highest weight representation of a reductive algebraic group or Lie algebra.
For each highest weight   we have an irreducible representation  . Then, for each 

, we have the decomposition

where   is the space of highest weight tensors of weight  .

Each isotypic subspace,  , has a natural action of the symmetric group   and
hence a Frobenius character,  . The problem is to find the quasisymmetric
expansion of this symmetric function.

Let   be the crystal of  . Then, for each  , we have the decomposition

where   is the set of highest weight words of weight  .

A descent set is a function   such that
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It is clear that descent sets in this sense exist since the quasisymmetric expansion of 
 corresponds to a multiset of subsets of   whose cardinality is the

cardinality of  . However the problem is to give a construction.

OPAC-023. Give an explicit construction of descent sets for various representations  .

Here is a classical example: take   to be the vector representation of  . Then, by
Schur-Weyl duality, we can identify   with the set of standard tableaux of shape 

, and the aforementioned combinatorial definition of the descent set of a standard
tableau gives us a descent set in this sense.

The current situation is that descent sets are only known for the vector representations
of classical groups; that is, for the vector representation of a general linear group (as just
explained), for the vector representation of a symplectic group [1], and for the vector
representation of an orthogonal group [2, 3].
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From Schensted to Pólya

Submitted by Dennis White

Suppose   is a finite permutation group acting on  . Let 
 denote the conjugacy class of permutations of type   in symmetric group  . Let 

 be the   irreducible   character evaluated at the conjugacy class  .

Define

In fact,   is the number of occurrences of the irreducible   in the induction of the
trivial character of   up to  , or, by Frobenius reciprocity, the dimension of the  -
fixed space inside the  -irreducible corresponding to  .

It is therefore an integer and

where   is the number of standard Young tableaux (SYT) of shape  .

OPAC-024. Interpret   as a subset of SYT of shape  .

The group   then acts (Pólya action) on colorings of  . For a partition  , let   be the
orbits of  -colorings of  , that is, the orbits in which color   appears   times. It
follows from Pólya’s Theorem that

where  , the Kostka number, counts the number of semistandard Young tableaux
(SSYT) of type   and shape  .

Alternatively (see [1]), compute the dimension of the  -weight space inside the  -fixed
space of the  -representation on   in two ways, either directly or via Schur-
Weyl duality.
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OPAC-025. Give a Schensted-like proof of Equation (*).

Example 1. If   (a Young subgroup), then 
 and

.

The tableaux in OPAC-024 are then the standarization tableaux of the SSYT and the
Schensted-like proof is the Robinson-Schensted-Knuth correspondence (RSK).

Example 2. We say   is a descent in SYT   if   lies in a row above   in  . Define

.

If  , the cyclic group of order  , acting on  , then the tableaux of OPAC-024
are those SYT   such that   is a multiple of  . See [1]. However, usual
Schensted applied to these tableaux does not produce orbit representatives for the Pólya
action, so OPAC-025 is unresolved.

Example 3. The techniques in [1] can also be used to solve OPAC-024 if 
 acting on  .

Example 4. Also solved in [1] is the case where   is the alternating subgroup of a
Young subgroup. If   is the alternating subgroup of  , then  .
Here,   denotes the conjugate of  . The solution to OPAC-025 uses a small modification
to the standardization argument for the RSK algorithm for the Young subgroup case.

Example 5. In fact, suppose   acts on  , with   acting on   and   on 
 (using a different alphabet). Suppose we know that   is a solution tableau (shape  ) to
OPAC-024 for   in   and   is a solution tableau (shape  ) for   in   (again,
different alphabet). Then let   be a partition larger than   and   with  .
Construct a tableau   of shape   as follows. Let   be a SYT of shape   such that the
lattice word of   fits   (and so is counted by the Littlewood-Richardson coefficient).
The portion of   in   is  . The portion of   in   is the Schensted word
corresponding to the pair   (see [1] for details; see also [3]). Of course, this idea
may be extended to longer direct products.

Example 6. Applying Example 5 to Example 2 and using the fact that jeu de
taquin preserves the descent set (see [2, Ch. 7 Appendix 1]), it follows that the tableaux 

 can be chosen to be those tableaux whose   in the two portions of the tableau (
 and  ) are divisible by   and  , respectively. Care must be taken that the alphabets
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in each portion are   and   respectively, even though the second alphabet is larger
than the first.

We note in passing that while it is easy to show that if   is conjugate to a subgroup of 
, then   for all  , the converse is not true. In fact,   contains two non-

conjugate Klein 4-groups each of which has three elements of type   and one
element of type  .
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On the multiplication table of
Jack polynomials

Submitted by Per Alexandersson and Valentin Féray

Let   be a positive real parameter and consider the Jack polynomials  , indexed by
partitions  . Jack polynomials are standard deformations of Schur functions, which can
be defined using either a scalar product or differential operators. They are a degenerate
case of the celebrated Macdonald polynomials. For background, we refer to [4] and [10],
from which we borrow our notation.

A natural question is how these polynomials multiply, i.e. we want to investigate the
coefficients   defined by

.

To state our first open problem, we need to introduce two  -deformations of the hook
products,   and   as

,      ,

where   and   are respectively the arm and the leg lengths of box   (  and 
 are denoted   and  , respectively, in [4]). The following conjecture was

stated by Stanley in 1989.

OPAC-026. ([10, Conjecture 8.3]) Prove that, for all partitions  , the quantity 
 is a polynomial in α with nonnegative integer coefficients.

Here are some examples of these numbers (taken from [10]; Stanley credits Hanlon for
the computations):

; 
.
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When Stanley formulated this problem, it was not even clear whether it is a polynomial
in  ; (that it is a rational function in   is easy). This polynomiality property, and the
integrality of the coefficients, is however a consequence of Knop-Sahi’s combinatorial
description of Jack polynomials [3]. The still open part of the problem is therefore the
nonnegativity.

For  , we have  , where   is the Schur function associated to  . The

quantities   are therefore the celebrated Littlewood Richardson coefficients, which
are nonnegative.

For  , the Jack polynomials   correspond, up to a multiplicative constant, to
the so-called zonal polynomials. The latter appear in the theory of the Gelfand pair 

 (  is the symmetric group on   elements and   its hyperoctahedral
subgroup, see [4, Section 7.2] for details). This algebraic interpretation implies the
nonnegativity of   [4, VII, (2.28)].

The case   follows from   by duality. As far as we are aware of, the
question of the nonnegativity of   is open for other values of  . Note also that
the nonnegativity for any fixed value   is weaker than the nonnegativity of the
coefficients as polynomial in  .

A generalization. As is standard in mathematics, to solve an open problem, it might be
useful to generalize it. To this end, we consider the so-called shifted Jack symmetric
functions or Jack interpolation polynomials, denoted  . These are non-homogeneous

“shifted symmetric” functions, whose top homogeneous component is  . We refer to
[7] for a definition of these objects (see also [8, 2]).

We consider the multiplication table of shifted Jack symmetric functions (they form a
basis of the ring of shifted symmetric functions):

.

As before, we renormalize by defining  .

Here are some examples:

; 
.
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More data data is given here (where 
).

The attentive reader might have noticed that  . This is not a coincidence:

whenever  , we have   (this follows from the top

component of   being  ). However unlike the   coefficients, the   coefficients are
also defined when  .

From the data, we propose the following generalization of OPAC-026, strengthening a
conjecture of Sahi [9, Conjecture 6].

OPAC-027. Show that, for any   with  , the quantity 
 is a polynomial in   with nonnegative coefficients.

Again, one can prove the polynomiality in   [1, Section 5], so that the still open part is
the nonnegativity of the coefficients.

Why is this generalized conjecture interesting? Sahi [9] has established some
recurrence relations for   (see [1, Section 6]):

Proposition. Let   (otherwise, the corresponding coefficient is zero). Then

where the first sum is taken over all possible ways to add one box to the diagram  , and the
second sum is over all ways to remove one box from  . Here,  , where   is
the coefficient appearing in the Pieri rule for Jack polynomials [4, VI, (10.11)].

The recursion, with the initial conditions  , determines uniquely all
coefficients  , hence in particular the coefficients  . On the other hand, we
are not aware of such recursions involving only the coefficients  . Hence
generalizing Stanley’s conjecture gives us an extra tool to attack it.

OPAC-028. Find some manifestly positive expression in  , e.g. as a weighted enumeration of a
family of tableaux depending on  , which satisfies the above initial conditions and
recursion.
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Such a strategy has been performed successfully in the case   (in the more general
context of factorial Schur functions), see [6, 5]. If you can generalize this approach to
any  , you’ll solve a 30-year old conjecture of Stanley, considered by Sahi as “perhaps
the most important outstanding problem regarding [Jack] polynomials” [9]…
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Two q,t-symmetry problems in
symmetric function theory

Submitted by Maria Monks Gillespie

There are many natural combinatorial problems yet to be solved in the study of two-
parameter symmetric functions such as Macdonald polynomials. We describe two of them
here, both of which ask to explain the symmetry between   and   exhibited by certain
combinatorially defined polynomials in   and  . For the first, a good general reference for
the notions involved is [2], and for the second, [4].

Diagonal coinvariants and parking functions

Consider the diagonal action of the symmetric group   on  , in
which permutations act simultaneously on the two sets of variables 
 and  . The diagonal coinvariant ring   is defined as

where   is the ideal generated by all the positive degree invariants under the  -action.

The Frobenius characteristic of a doubly graded  -module   is a two-parameter symmetric
function that captures its representation-theoretic information. It is defined as

where   is the number of copies of the irreducible  -module   appearing in the degree 
 component of  , and where   is the Schur function corresponding to   in the

variables  .

The recently proved Shuffle Theorem [1] states that

where the terms in the summation are defined as follows:

 is the set of all word parking functions of height  , defined as a pair 
 where   is a Dyck path from   to  , and   is a positive integer labeling of
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each grid square to the right of a vertical step in  , such that the labels in each column
are increasing from bottom to top.

 is the number of grid squares whose interiors lie strictly between the
diagonal and the Dyck path.

 is the number of pairs   of labels with   such that either (a)   and   lie
on the same diagonal line   with   below  , or (b)   is on the diagonal 

 and   is on   for some  , with   above  .
 where   is the number of times the label   appears in  .

For example, if   is the word parking function drawn below, we have  , 
, and  :

Interestingly, the left hand side of equation (*) must be symmetric in   and  , because as a
ring   is symmetric in the two sets of variables   and  , which determine the double
grading. However, there is not an obvious combinatorial explanation for why the very
different statistics   and   on the right hand side of (*) should exhibit such a
symmetry.

OPAC-029. Give a combinatorial proof of the  -symmetry of the summation in equation (*), by
finding a bijection on word parking functions that interchanges   and  .

Let us use   to denote the subspace of antisymmetric elements of  . Some recent progress
has been made towards a combinatorial proof of the  -symmetry of the Hilbert series of 

, which is the coefficient of   in the Frobenius series of  . The Hilbert series of 
 is given by the  -Catalan number:

where   is the set of all word parking functions whose labels are exactly 
 increasing from bottom to top. The paper [6] gives a possible combinatorial approach to
the symmetry of   and a proof in certain special cases.
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Garsia-Haiman modules and Macdonald symmetry

The  -modules   were introduced in the study of Macdonald polynomials because they
have important quotients called the Garsia-Haiman modules. Given a partition  , the
module   is defined as

where   is a larger set of polynomials than   but is still invariant under the diagonal
action of  . (See [4] for more details.)

The Frobenius characteristic of   is the transformed Macdonald polynomial  ,
which was shown in [3] to exhibit the following combinatorial formula:

Here, we have:

The set   is the set of all fillings   of the Young diagram of shape   in which each
square is filled with a positive integer (with no other restrictions on the entries).
A descent of   is an entry   that is strictly larger than the entry just below it, and we
define   to be the number of entries weakly above   in its column. Then 

 where the sum is over all descents   of  .
A relative inversion of   is a pair   of entries in the same row with   to the left of  ,
such that if   is the entry directly below   (or   if no such entry exists), either:

 and   is between   and   in size, in particular  , or
 and   is not between   and   in size, in particular either   or 

.
Then   is the number of relative inversions of  .

 where   is the number of times the label   appears in  .

If   is the example filling of shape   drawn below, we have  , 
, and  :
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Define   to be the conjugate of a given partition  , formed by reflecting its Young
diagram about the diagonal. Due to the definition of the ideals  , the Macdonald
polynomials exhibit ‘conjugate symmetry’ in   and   in the sense that:

OPAC-030. Give a combinatorial proof of the conjugate  -symmetry of the summation in
equation (**).

In [5], the author found a bijection between fillings that conjugates the partition and
switches   and   for hook shapes  , as well as for several more families of shapes in
the specialization at   (in other words, when restricting to those fillings   which have 

). However, a complete combinatorial explanation of the symmetry between
the statistics remains elusive.

References:

[1] E. Carlsson, A. Mellit, A proof of the shuffle conjecture, J. Amer. Math. Soc. 31 (2018),
661–697. DOI: 10.1090/jams/893

[2] J. Haglund, The  -Catalan Numbers and the Space of Diagonal Harmonics: With an
Appendix on the Combinatorics of Macdonald Polynomials, University Lecture Series, Vol. 41,
American Mathematical Society, Providence, RI, 2008. Available online here.

[3] J. Haglund, M. Haiman, N. Loehr, A combinatorial formula for Macdonald
polynomials, J. Amer. Math. Soc. 18 (2005), 735–761. DOI: 10.1090/S0894-0347-05-00485-6

[4] M. Haiman, Combinatorics, Symmetric Functions, and Hilbert Schemes, Current
Developments in Mathematics (2002), no. 1, 39–111. DOI: 10.4310/CDM.2002.v2002.n1.a2

[5] M. Gillespie, A combinatorial approach to the  -symmetry relation in Macdonald
polynomials, Electron. J. Comb., 23 (2016), no. 2, P2.38. DOI: 10.37236/5350

[6] K. Lee, L. Li, N. Loehr, A combinatorial approach to the symmetry of  -Catalan
numbers, SIAM J. Disc. Math. 32 (2018), no. 1, 191–232. DOI: 10.1137/16M1059916

41



Coinvariants and harmonics

Submitted by Mike Zabrocki

Parts of this open problem are well studied and the results are well known, other aspects and
variations have been barely explored.

Start with the polynomial ring in   sets of   commuting variables   and   sets of   anti-
commuting variables  . That is there are variables   and   with  , 

,   satisfying the relations

for all  ,   and  . That is we are looking at the
ring of polynomials in these variables and we will denote this polynomial ring as

.

Now let   be a group which acts on the first index of the variables. That is, for each  ,
there exists coefficients   and   such that

for all   and   and this action is extended to act on the monomials in the
variables. An invariant is a polynomial   such that   for all 

. The  -invariant polynomials are closed under multiplication and addition and
form a subring of  .

The coinvariant ring (and  -module) is the quotient of the ideal generated by the invariants
with no constant term. That is, it is the space defined as

where   is the ideal generated by the invariants of the action of   that have no constant
term (if the constant term is included in this ideal then the ideal includes the whole ring).

OPAC-031. Describe the structure of   as completely as possible (dimension, ring structure,
decomposition into  -irreducibles, Gröbner basis of  , resolutions, geometric interpretations, etc.).
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There is an isomorphic formulation of this construction in terms of polynomials which are
killed by all symmetric polynomials in differential operators with non-constant term. This
space is usually referred to as ‘harmonics’ and certain aspects of this space are easier to
understand or calculate through the isomorphism between the coinvariants and harmonics
(see [4]).

The most interesting case for me is when   and I provide a table below summarizing
the dimensions for small   and   as sequences in n referring to the OEIS sequence number
(these are all conjectural based on only a few values except for 

 where the result has been proven). The first 7
terms of   entry are 1, 1, 5, 45, 597, 10541, 233157. For  , the first
7 entries are 1, 1, 5, 50, 785, 17072, 478205 and for   the first 7 entries are 1, 1, 6,
74, 1440, 38912, 1356096. None of these three sequences are currently in the OEIS.

(Mostly conjectured) dimensions of   for small   and  .

1  – A000079  – A001700

 – A000079 A000670  – A002866

 – A000272 A201595 ?

 – A127670 ? ?

A list of references that touches on all the special cases of this problem that people have looked
at before would be quite long. The best known special case is   and then a
description follows from work of Chevalley-Sheppard-Todd [2, 11] which says that the
dimension of   is equal to the order of   if and only if   is a group generated by pseudo-
reflections. In that case,   is isomorphic as a  -module to the regular representation of  .
This is the level of understanding that we would like to have of   in all cases.

Some computational experiments leads us to believe that the dimension of   is equal to the
order of the Coxeter complex of  , but only ‘most of the time.’ Brendon Rhoades and Josh
Swanson [10] had made this observation but then found that the dimension of   is not
equal to the order of the Coxeter complex. I tried computing some of these and found that for
small values this was true in types  ,  ,  ,   but then I wasn’t able to compute the
coinvariants with   using Macaulay2 without running out of memory so the data may
not be in any way robust enough to call this a conjecture. Pinning down the precise statement
in this case would be a really nice extension to the work of Chevalley-Sheppard-Todd. Josh
Swanson [12] gave a description of the alternating part of  .

In the case of   and   and  , Mark Haiman [8] conjectured in the early 90’s
that the dimension of   is   and the multiplicity of the alternating
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representation is equal to the Catalan number  . In that same paper he also conjectured
the dimension and multiplicity of the alternating representation for   and  . The
dimensions for the   case were proven in 2000 [9] and Iain Gordon [5] then proved
analogous results for   a finite Coxeter group. In the following years an extension to a
combinatorial formula for the graded Frobenius image of the character of   became known
as ‘The Shuffle Conjecture’ [6] and this formula was proven in 2016 by Carlsson and Mellit [1].
The Schur expansion of the expression in The Shuffle Conjecture is not known and I stated this
open problem in a way that indicates there is room to still explore this case.

Haglund, Remmel and Wilson [7] proposed an extension to the combinatorial and symmetric
function formulae that appear in The Shuffle Conjecture and named it ‘The Delta Conjecture.’
The idea for this open problem comes from a conjecture that I posted [14] in February 2019 that
their proposed expression is encoded in the graded character of  .

François Bergeron [3] has been looking a module that is conjecturally isomorphic to the
module  . He encoded the character/Frobenius character in a multivariate expression and
has been able to compute it for   up to   for any   (and I used his symmetric
function expressions to calculate the data for the above table).
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Isomorphisms of
zonotopal algebras

Submitted by Gleb Nenashev

Zonotopal algebras were defined for hyperplane arrangements independently by F.
Ardila and A. Postnikov in [2] and O. Holtz and A. Ron in [3]. Prior to these works A.
Postnikov and B. Shapiro defined the family of graphical algebras; see [5, 6]. Here we
present definitions and the problem only for the graphical case. For the case of
unimodular zonotopal algebras and general zonotopal algebras, all definitions, results,
and the conjecture can be extended; see more details in [4].

Let   be a graph on   vertices. We index its vertices with numbers   to  , i.e., 
. For an integer  , consider the ideal   in the ring 

 generated by

where   is the number of edges of   connecting   and  . Define   to be the
quotient algebra  .

These algebras are independent on the choice of the root (i.e., which vertex is labeled  ).
There are 3 main cases of these algebras, namely:

k = 1: External zonotopal algebra;
k = 0: Central zonotopal algebra;
k = −1: Internal zonotopal algebra.

All these   graphical zonotopal algebras are graded. Their total dimensions (as linear
spaces) and their Hilbert series both admit good combinatorial interpretations.

Theorem. (cf. [2, 3, 5, 6]) Given a connected graph  , the Hilbert series of zonotopal algebras are
given by

;

;
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,

where   is the Tutte polynomial of  .

Corollary. (cf. [5]) For a connected graph  ,

the dimension of the external zonotopal algebra   is the number of forests of  ;
the dimension of the central zonotopal algebra   is the number of trees of  .

In fact, the above theorem applies to any vector configuration. Furthermore, if a
configuration is totally unimodular (that is, if any minor of the corresponding matrix is 

 or  ), then the total dimensions of these three algebras are the number of lattice
points, the volume, and the number of internal lattice points of the corresponding
zonotope.

Example. Let   be a graph on the vertex set   with   edges:  ,  ,  ,
and  . Then   is the Tutte polynomial of  . Its
corresponding zonotope is defined as the following Minkowski sum of edges:

The graph   and its corresponding zonotope   are depicted below:

In this case, the zonotopal ideals are

and

, and the total dimension of   is  ;
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, and the total dimension of   is  ;
, and the total dimension of   is  .

The graph   has exactly   forests and   trees. Furthermore, the number of lattice
points, the area, and the number of internal lattice points of   equal  ,  , and  ,
respectively.

The main result of [4] is the classification of the external zonotopal algebras up to
isomorphism. In the graphical case the result gives

Theorem. (cf. [4]) Let   and   be two graphs. Then the following are equivalent:

 and   are isomorphic as non-graded algebras;

 and   are isomorphic as graded algebras;
the graphical matroids   and   are isomorphic.

The cases of central and internal zonotopal algebras are still open.

OPAC-032. Classify central and internal zonotopal algebras up to isomorphism.

In the case of the central zonotopal algebra, we have the following specific conjecture,
which appears in [4]:

Conjecture. Given two connected graphs   and  , the central zonotopal algebras of   and 
 are isomorphic if and only if the bridge-free matroids of these graphs are isomorphic (where by

bridge-free matroid we mean the matroid obtained after removing all the bridges).

The proof of the classification of external zonotopal algebras is based on an alternative
definition of the external zonotopal algebra, where we consider the algebra as a
subalgebra of a square-free algebra; see [6]. There is an analogous alternative definition
for the central algebra as well (see [1, Section 4]).
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Banff, Louise, and class P quivers

Submitted by Eric Bucher and John Machacek

Cluster algebras are commutative rings defined by Fomin and Zelevinsky [1] with a
distinguished set of generators determined by a combinatorial process known
as mutation. These algebras are known to be connected with various areas of mathematics
and physics. Hence, the theory of cluster algebras has many directions and open
problems. Here, we will focus on some purely combinatorial open problems in cluster
algebra theory with the hope of giving researchers in combinatorics an avenue into
cluster algebras. Also, we think these problems will interest cluster algebra researchers
and give them ideas for combinatorial applications of their work.

The problems here will make no mention of the ring structure nor the generators. This is
not to say algebra is not still present. Solutions to the problems mentioned would have
an immediate impact on the corresponding cluster algebras. Furthermore, even though
the problems are combinatorial in statement it is certainly possible solutions could be
obtained by other means.

A quiver,  , is a directed graph with no loops or 2-cycles. Mutation at a vertex   is a
process which produces a new quiver, denoted  , by using the following three
steps in order:

1. For each pair of arrows  ,   add an arrow  .
2. Reverse the direction of all arrows incident to  .
3. Delete a maximal collection of disjoint 2-cycles.

A bi-infinite path in a quiver   is a sequence   of vertices such that   is
an arrow for each  . A pair of vertices   is a covering pair if   is an arrow
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that is not part of any bi-infinite path. Muller’s class of Banff quivers [2] is defined as the
smallest class of quivers such that

any acyclic quiver is Banff,
any quiver mutation equivalent to a Banff quiver is Banff,
and any quiver   with a covering pair   where both   and   are
Banff is a Banff quiver.

Here a quiver is acyclic if it contains no directed cycles. Banff quivers are of importance
because the cluster algebras they define are locally acyclic which means they enjoy many
nice properties including being finitely-generated, integrally closed, and equal to their
upper cluster algebras [2] [3]. Also, Banff quivers admit reddening sequences [4].
A reddening sequence is a desirable sequence of mutations defined by Keller (see [5] for a
survey). Speyer and Lam have modified the Banff property and defined the class
of Louise quivers [6] as the smallest class of quivers such that

any acyclic quiver is Louise,
any quiver mutation equivalent to a Louise quiver is Louise,
and any quiver   with a covering pair   where each of  ,  , and 

 is Louise is a Louise quiver.

The definition for Banff and Louise quivers are very similar. The only difference is to be
Louise we must additionally check   for a covering pair  . This extra
condition allows for Mayer-Vietoris sequences to be used in computing the cohomology
of the corresponding cluster varieties.

OPAC-033. Find an example of a Banff quiver which is not Louise or prove no such quiver exists.

If the class of Banff quivers coincides with the class of Louise quivers it would be
advantageous to know this since one could then use the full power of Louise quivers
while only checking the Banff condition. On the other hand if these two classes of
quivers are different it would be interesting to understand what the difference between
them is.

In practice, covering pairs involving sources or sinks are often used to show a quiver is
Banff, but it is unclear whether one can obtain all Banff quivers this way. Let   denote
the class of Banff quivers and let   denote the subclass of Banff quivers which only use
covering pairs such that at least one of the two vertices is a source or sink.

OPAC-034. Find an example of a quiver in   or prove no such quiver exists.

Understanding the difference   and   would be interesting as well as potentially useful
in checking the Banff conditions. Additionally, the quivers in   have stronger
implications, including equality of the quantum cluster algebra with the quantum upper
cluster algebra [7]. More problems of this type include relations to Kontsevich and

51



Soibelman’s [8] class   (which we will not define here). For example, we have the
following problem of containment between Banff quivers and the class  .

OPAC-035. Find an example of a Banff quiver which is not in the class   or prove no such
quiver exists.

For further discussion of OPAC-034 and OPAC-035 see [4].
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The Dedekind-MacNeille
completion of Type B Bruhat order

Submitted by Sam Hopkins

Let   be a poset. The Dedekind-MacNeille completion of   is the “smallest” complete lattice 
 with an embedding  , in the sense that   is a subposet of any other such lattice.

(We will exclusively be interested in finite posets and lattices, for which completeness is
automatic, so from now on we will drop the adjective complete.) It can be constructed
explicitly from   in much the same way that the real numbers can be obtained from the
rationals using Dedekind cuts, hence the name.

Consider the case  , the (strong) Bruhat order on the symmetric group. Unlike
weak order, Bruhat order is not a lattice, so it makes sense to ask about its Dedekind-
MacNeille completion. In [4], Lascoux and Schützenberger describe the Dedekind-
MacNeille completion of   in terms of alternating sign matrices.

Recall that an alternating sign matrix (ASM) is a matrix with entries in   such
that: every row and every column sums to one; the nonzero entries in every row and
column alternate in sign. The number of   ASMs is given by the famous formula

           (http://oeis.org/A005130)

conjectured by Mills-Robbins-Rumsey, proved by Zeilberger (and later Kuperberg).

For a   alternating sign matrix  , define its rank matrix   by 
. That is, each entry of the rank matrix records the sum of the

entries weakly northeast of that entry in the ASM. Then define a partial order on 
 ASMs by   iff   entrywise. We denote this poset (which is in fact a
distributive lattice) by  .

Lascoux and Schützenberger [4] showed that   is the Dedekind-MacNeille
completion of  . Furthermore, the embedding   just corresponds to
viewing a permutation matrix as an ASM.

The open problem is to do the same for  , the Bruhat order on the Type B Coxeter group,
a.k.a. the group of signed permutations of  , a.k.a. the
hyperoctahedral group. More specifically, there is a natural embedding   where
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we view   as the subset of “half-turn symmetric”   permutation matrices, i.e.,
those invariant under   rotation. This means that the Dedekind-MacNeille completion
of   can naturally be viewed as a subset of  .

OPAC-036. Describe the Dedekind-MacNeille completion of   as a subset of  .

For prior work on the Dedekind-MacNeille completion of   and related matters like a
description of its join irreducible elements, in addition to the work of Lascoux and
Schützenberger [4], consult also Geck and Kim [3], Reading [5], Anderson [1], and
Armstrong and McKeown [2].

A natural guess would be that the Dedekind-Macneille completion of   consists of the
half-turn symmetric   ASMs. Certainly the half-turn symmetric ASMs form a
sublattice of  . And the number of such ASMs also has a beautiful product formula

           (http://oeis.org/A059475)

which for   gives  . However, the number of elements in
the Dedekind-Macneille completion of   gives the sequence  . (This
last value   for   was computed by Angela Chen as an undergraduate at the
University of Minnesota.) So we see that the Dedekind-Macneille completion of   does
not consist of all half-turn symmetric   ASMs.

Regarding numerics, this brings us to the next open problem.

OPAC-037. Give a formula for the number of elements in the Dedekind-MacNeille completion of 
.

Since   has a large prime factor, there may be no nice formula.

Returning to the question of how to characterize the Dedekind-MacNeille completion of 
 inside of  , we note that it must consist of some proper subset of the half-turn

symmetric ASMs. For instance,
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(where   means   and   means  ) is not a join of half-turn symmetric permutation
matrices, hence not in the Dedekind-MacNeille completion of  .

Possibly the following additional requirements, which were proposed by David Speyer in
comments on his MathOverflow question [6], suffice. For  , consider the
submatrix of our ASM whose rows are   and columns are 

. We require that this submatrix has at most   more 
‘s than  ‘s. (The above matrix fails this condition with   and  .) We also

impose the same condition but with rows and columns switched. It can be shown that the
half-turn symmetric   ASMs satisfying these conditions form a lattice inside of 

, which may be the Dedekind-MacNeille completion of  .

Of course, it is also natural to wonder about the Dedekind-MacNeille completion of Bruhat
order in other types. However, we warn that while the Dedekind-MacNeille completion of
Bruhat order in Types A and B is a distributive lattice, this is not true for Types D, E and F.
(For more on this subtlety, see for instance the discussion of the “dissective” property in
[5].) So it might be much harder to understand the Dedekind-MacNeille completion of
Bruhat order outside of Types A and B.
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