
Some combinatorial problems arising in the dimer model

R. Kenyon

1. Introduction

We collect here a few diverse problems on the dimer model. For background
on dimers one can read for example [6].

Let G = (V,E) be a finite, connected, bipartite graph. A dimer cover, or perfect
matching, of G is a collection m ⊂ E of edges that covers each vertex exactly once.
We denote by M = M(G) the set of dimer covers of G.

Let c : E → R>0 be a positive weight function edges of G. If m ∈ M is a dimer
cover, we define c(m) =

∏
e∈m ce to be the weight ofm. This weight function defines

a probability measure µ = µc on M, giving a dimer cover a probability proportional

to its weight, that is, Pr(m) = c(m)
Z , where the constant of proportionality Z is the

partition function: Z =
∑

m∈M c(m).
Essentially the most fundamental problem in the dimer model is the following:

Problem 0. For a random dimer cover, compute the edge probabilities, that
is, compute the probability Pr(e) that any particular edge e is used.

This is easy if we can compute Z as a function of edge weights, since

(1.1) Pr(e) =
ce
Z

∂Z

∂ce
=

∂ logZ

∂ log ce
.

However on general graphs computing Z is hard, even for constant edge weights:
enumerating dimer covers is in fact #P-complete, by a celebrated result of Valiant
[11]. Note that computing Pr(e) is in fact just as hard as computing Z, since one
can reconstruct Z from integrating Pr(e) using (1.1). For planar graphs we can
however compute Z and thus solve the above problem, using Kasteleyn’s method
of enumerating dimer covers with determinants, see [6] and Section 2.2 below.

One useful change of perspective is to consider the edge weights as a “C∗-local
system” on G, that is, as a connection on a line bundle on the graph. This point of
view may seem at first just an added level of abstraction, and to be taking us away
from combinatorics. But it turns out to have a number of advantages, such as:

(1) It highlights a non-obvious symmetry of the problem: the gauge invariance
(see below).

(2) It generalizes naturally to other gauge groups such as SLn(R), with inter-
esting combinatorial interpretations (see Sections 6 and 7 below).

(3) It connects the problem to geometry.
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Our choice of problems in this article is (mostly) motivated by this geometric
point of view.
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2. Preliminaries

2.1. Vector bundles and connections on graphs. What is a bundle with
connection on a graph? Fix a vector space V and assign an isomorphic copy Vv of V
to each vertex v ∈ V . For each edge e = uv we associate a linear isomorphism ϕuv :
Vu → Vv of these vector spaces, with ϕvu = ϕ−1

uv . Generally we have ϕuv ∈ GL(V)
but we can restrict if desired to other subgroups of GL(V), and even noninvertible
endomorphisms [2]. In this paper we will only use SLn(C) connections on Cn or C∗-
connections on C. (Here C∗ = C\{0} is the group of C-linear automorphisms of C.)
These are called, respectively, SLn-local systems and C∗-local systems. Sometimes
we specialize the latter from C∗ to R∗.

If we choose a basis for each vector space Vv then each ϕuv is a matrix. Changing
bases by matrices Av at vertices v results in new edge matrices ϕ′

uv = AuϕuvA
−1
v .

Such changes are called gauge transformations. They form a symmetry of the
system.

If γ is an oriented loop in G based at x0, the monodromy ϕγ of the connection
around γ is the composition of the isomorphisms ϕe along γ starting at x0. The
conjugacy class of ϕγ is invariant under gauge transformations. Note also that
changing the basepoint along γ conjugates the monodromy.

For one-dimensional bundles, with V = R, each ϕuv ∈ R∗ is a scalar. Since we
are assuming G is bipartite, we can canonically orient the edges from black to white.
Then ϕbw is a scalar quantity associated to edge bw which we call the edge weight.
In probability settings we usually take ϕbw positive. However it is sometimes useful
to consider V = C and ϕbw ∈ C∗. Gauge transformations are functions A : V → C∗

and transform ϕbw into ϕ′
bw = AbϕbwA

−1
w .

For an R-bundle, when edge weights ϕbw are positive, we can associate a prob-
ability measure µ as above. Then positive gauge transformations (i.e. when the
Av > 0) change the weights of individual dimer covers but not the probability mea-
sure µ: If we multiply the edge weights of all edges at a single vertex by a constant
λ > 0, then the weight of every dimer cover is multiplied by λ. This implies that
the probability measure µ only depends on the equivalence class of edge weights
under gauge transformations, that is, on the “edge weights modulo gauge”.

2.2. Planar bipartite graphs and the Kasteleyn matrix. Let G be a
planar bipartite graph with a C∗-local system Φ (equivalently, a set of edge weights
in C∗, see the previous section). We define a matrix K, the Kasteleyn matrix for G,
as follows. The matrix K = (Kwb) has rows indexing white vertices and columns
indexing black vertices, and

Kwb =

{
±ϕbw b ∼ w

0 otherwise
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Figure 1. A graph and its expected fractional matching (for uni-
form edge weights). This graph has three dimer covers; two of
these use the leftmost vertical edge, so its probability is 2/3.

where the signs are chosen by the “Kasteleyn rule”: a face of length ℓ has ℓ
2+1 mod 2

minus signs. Kasteleyn showed in this case that the determinant of K counts
weighted dimer covers:

Theorem 1 ([4, 7]). |detK| =
∑

m∈M c(m).

As an application, probabilities of one or more edges being in a dimer cover are
minors of the inverse of K, see [5].

If G has an SLn-local system, one can similarly define a Kasteleyn matrix,
whose entries are now n× n matrices themselves; see Sections 6.1,7.2 below.

3. From edge weights to probabilities

We wish to study the mapping from edge weights to probabilities. This requires
first defining the correct spaces.

3.1. Fractional matchings. A fractional matching of G = (V,E) is a func-
tion f : E → [0, 1] which sums to one at each vertex:

∑
u∼v f(u) = 1. A dimer

cover m determines a fractional matching, by assigning f(e) = 1 for each e ∈ m
and f(e) = 0 otherwise. The set of fractional matchings Ω(G) is a convex polytope
in RE (in fact a subset of [0, 1]E) whose vertices are exactly the dimer covers of G,
see [8].

A probability measure on dimer covers is a probability measure on the ver-
tices of Ω, and so has a barycenter which is a point in Ω. The coordinate of this
barycenter corresponding to an edge is the probability of that edge.

So a more elegant statement of Problem 0 is

Problem 1. Compute the expected fractional matching.

See an example in Figure 1.

3.2. Cycles. A flow on a graph G is a function f on oriented edges satisfy-
ing f(−e) = −f(e) where −e represents the edge with the reversed orientation.
The cycle space H1(G) is the space of divergence-free flows: flows f satisfying∑

u∼v f(vu) = 0 for all v.
Since G is bipartite, we can orient edges from black to white, and then for any

two fractional matchings f1, f2 ∈ Ω, f1 − f2 represents an element of the cycle
space of G, denoted [f1 − f2]. Fixing a basepoint f0 ∈ Ω, we can map Ω linearly
and injectively into H1(G) by f 7→ [f − f0].

We say G is nondegenerate if Ω is of dimension d = |E|− |V |+1, the dimension
of the cycle space of the graph. A graph is degenerate (that is, not nondegenerate)
if there are unused edges (edges which participate in no dimer cover) whose removal
does not disconnect the graph [8]. Figure 3.2 shows a degenerate graph.
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Figure 2. A degenerate graph. The dimension of the cycle space
is 3 but Ω is of dimension 2. Note that the two diagonal edges are
“unused”, that is, do not appear in any dimer cover.

3.3. Gauge equivalence. For a bipartite graph, the space of equivalence
classes of edge weights modulo gauge transformations, that is, the space of C∗-local
systems, is isomorphic to (C∗)d where d is the dimension of the cycle space of the
graph. Explicitly, for a cycle γ we can define Xγ to be the monodromy of the
connection around γ. In terms of edge weights, Xγ is the alternating product of
edge weights around γ: assuming we start at a black vertex, Xγ is the first weight,
divided by the second, times the third, and so on. Note that Xγ is invariant under
gauge transformations. Reversing the orientation inverts the monodromy. If γ
ranges over a basis for the cycle space, the set of monodromies {Xγ} parameterize
the space of all edge weights modulo gauge, that is, all C∗-local systems.

For a planar graph, a basis for the cycle space is the set of cycles around
the bounded faces. Consequently we can take the “face weights” {Xf}f∈F on the
bounded faces of the graph to parameterize the choices of edge weights modulo
gauge.

Now a perhaps more interesting variant of Problem 0 is:

Problem 2. For nondegenerate graphs, study the map Ψ from cycle weights
{Xf} to the expected fractional matching.

The domain and range of Ψ have the same dimension: the dimension of the
cycle space of the graph.

Theorem 2. If G is nondegenerate then Ψ is a diffeomorphism from the space
of cycle weights (R>0)

d to Ω(G).

Proof. Fix the gauge by choosing a spanning tree T of G and setting edge
weights 1 on the tree T and weights ce for e ̸∈ T . Let Z = Z({ce}) be the associated
partition function. Let pe be the probability of edge e for e ̸∈ T . All the other edge
probabilities (and therefore the fractional matching f) are uniquely determined by
the probabilities {pe | e ̸∈ T}: one can determine the value of f on the leaves of the
tree, then remove these and continue with the leaves of the subtrees inductively. As
in (1.1) we have pe = ce

∂ logZ
∂ce

. We can write this as p⃗ = ∇ logZ where the gradient

is taken with respect to the vector of “edge energies” (log ce)e ̸∈T .
Since Z is a positive polynomial (that is, its coefficients are nonnegative), it is,

up to scale, the probability generating function of a probability measure on Zd of
finite support. The Hessian of logZ with respect to the logs of its variables is the
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covariance matrix of this probability measure:

c1c2
∂2

∂c1∂c2
logZ =

c1c2
Z

∂2Z

∂c1∂c2
− c1c2Zc1Zc2

Z2
= E[X1X2]− E[X1]E[X2]

where X1, X2 are the indicator functions of edges 1, 2. Any covariance matrix is
positive semidefinite, and thus this Hessian is positive semidefinite: Hess logZ ≥ 0.
In fact it is positive definite as long as the Newton polytope of Z is of positive
volume, that is, if the exponents of the monomials of Z span the cycle space. But
this is guaranteed by nondegeneracy. Since Hess(logZ) is positive definite, logZ is
strictly convex and so ∇ logZ is a diffeomorphism onto its image. □

Note that det(∇Ψ) is a rational function of the ce. What is the degree of ∇Ψ
as a rational map on Cd? If we extend Ψ to all of Cd it appears that the inverse of
a point p⃗ ∈ Ω consists in real values of ce (only one preimage consists in positive
reals, but there can be multiple non-positive preimages; it is not clear that these are
always real, although they are in the small examples we tried). A similar situation,
for resistor networks, where reality of the other preimages is proved, can be found
in [1].

4. Dimer walks

To each dimer cover m ∈ M(G) is associated an involution πm : V → V . This
is the involution exchanging a vertex with the vertex it is paired with.

Problem 3. Let {m1,m2, . . . } be a sequence of i.i.d. dimer covers of G. Study
the random walks on SV , the permutation group on the vertices, defined by the πmi

.

Another way to state this is to define g = 1
Z

∑
m∈Ω1(G) π(m) ∈ R[SV ], the

element of the group algebra R[SV ] of SV defined by a random choice of dimer
cover. What can be said about gn?

As a simple example one can take G = K4 with vertices [4] = {1, 2, 3, 4}. The
three dimer covers correspond to the three permutations (12)(34), (13)(24), (14)(23)
which generate a subgroup of S4 isomorphic to (Z2)

2. The dimer random walk just
becomes simple random walk on this group, where every element is adjacent to any
other element, that is, we have simple random walk on K4.

For another simple example, let G be the 3 × 2 grid. Rather than record the
element in S6, without loss of information we can record simply the permutations
of the x-coordinates of the vertices, in S3. There are 3 dimer covers, and the
walk corresponds to multiplication by g = 1

3 (1 + e(12) + e(23)). Its eigenvalues are

1, 2
3 ,

2
3 ,−

1
3 , 0, 0.

As a more interesting example, when G is the n × n grid graph on a torus,
each vertex undergoes a simple random walk on V , since with probability 1/4 it is
matched to any neighbor. These simple random walks are coupled to avoid each
other. How quickly does the process mix? What is the expected winding of two
walks around each other, as a function of time?

5. Magnetic double dimer model

5.1. Double dimers. Recall that M = M(G) is the set of dimer covers of G.
A double dimer cover is a functionm : E → {0, 1, 2} which sums to 2 at each vertex.
See Figure 3. A union of two single dimer covers determines a double dimer cover,
and (for bipartite graphs) every double dimer cover occurs this way. The map from
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Figure 3. A double dimer cover of a grid. Edges of multiplicity
1 or 2 are shown.

pairs of dimer covers to double dimer covers is not, however, injective: each double
dimer cover m arises from 2ℓ ordered pairs of single dimer covers, where ℓ is the
number of cycles in m, where the cycles are formed from the edges of multiplicity
1.

LetM2 be the set of double dimer covers of G. The natural probability measure
on M2 (for us) is not the uniform measure. It is, rather, the projection of the
uniform measure on M × M under the standard map M × M → M2. Thus a
double dimer cover m has a probability proportional to 2ℓ where ℓ is the number
of cycles (cycles formed from edges of multiplicity 1; edges of multiplicity 2 do not
count as cycles). We call 2ℓ the weight c(m) of m.

Problem 4. What can be said about the distribution of loops in the double
dimer model on Z2?

Let G be a bipartite planar graph, and q ∈ C∗ be a variable. One can define a
C∗-connection on G so that each face has counterclockwise monodromy q, see for
example Figure 4. Let K(q) be an associated Kasteleyn matrix. For a double-dimer
configuration m2 define

(5.1) c(m2) =
∏

loops γ of m2

(qAγ + q−Aγ )

where Aγ is the area (number of faces) enclosed by γ. We then have

Theorem 3.

(5.2) detK(q) detK(1/q) =
∑

m2∈M2

∏
loops γ of m2

(qAγ + q−Aγ ).

Proof. The quantity detK(q) detK(1/q) counts pairs of dimer configurations
(m,m′), where m′ has the inverted q-weight. In the superposition of m and m′,



SOME COMBINATORIAL PROBLEMS ARISING IN THE DIMER MODEL 7

q0

q-1

q2

q-3

q0

q1

q-2

q3

q0

q-1

q2

q-3

1

q

q2

q3

1

q

q2

1

q

Figure 4. Connections with monodromy q per face.

we orient m’s dimers from black to white and m′’s dimers from white to black,
reversing the parallel transport, so that the orientations of loops are consistent. In
this way the weight of an oriented loop is given by its monodromy, that is, qA where
A is the area enclosed by the loop. When we sum over both orientations of each
loop, we find (5.2). □

It is tempting to use (5.2) to answer Problem 4. For example one can ex-
pand detK(q) detK(1/q) near q = 1 to get various moments. However extracting
information about the areas from this does not appear easy.

An alternative approach is to invert the standard Kasteleyn matrix (when q =
1) and use it to compute the probability of any given shape of loop. For the square
grid Z2, this can be used to compute the expected density of loops of fixed small
area, as follows. The “inverse Kasteleyn matrix” for Z2 can be obtained as a limit
as n → ∞ of K−1

Gn
for Gn the 2n × 2n grid, see [6]. There is an explicit formula:

when b− w = (x, y) ∈ Z2,

K−1((0, 0), (x, y)) =
1

(2πi)2

∫∫
|z|=|w|=1

z(−x+y+1)/2w(−x−y+1)/2

1 + z + w − zw

dz

z

dw

w
.

Minors of this matrix compute edge probabilities for random dimer covers of Z2,
see [5]:

Pr((w1, b1), . . . , (wk, bk)) = |det(K−1(bj , wi)1≤i,j≤n)|.
The expected density of loops of area 1 (the probability that a given face is in such
a loop) is the probability that for a pair of single dimer models (m,m′) on Z2,
m contains edges (0, 0)(1, 0) and (0, 1)(1, 1) and m′ contains edges (0, 0)(0, 1) and
(1, 0)(1, 1), or the reverse. The probability that m contains both edges (0, 0)(1, 0)
and (0, 1)(1, 1) is, by a short computation, 1

8 . So the expected density of loops of

area 1 in the double dimer model is 2
82 = 1

32 . Similarly the density of loops of

area 2 can be computed to be (π−1)2

2π4 . The density for area-3 loops is already more
complicated:

3
(
64− 192π2 + 192π3 − 32π4 − 32π5 + 24π6 − 8π7 + π8

)
32π8

.
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6. SL2 connections

6.1. Kasteleyn matrix. Consider G a planar bipartite graph with an SL2-
local system Φ. Let K = (Kwb) be an associated Kasteleyn matrix for G, that is a
matrix with rows indexing white vertices and columns indexing black vertices, and

Kwb =

{
±ϕbw b ∼ w

0 otherwise

where the signs are chosen by the same Kasteleyn rule as in the scalar case: a face
of length ℓ has ℓ

2 + 1 mod 2 minus signs. Here by 0 we mean the zero matrix in

M2(R). Then K is an N ×N matrix with entries in M2(R). Let K̃ be the 2N ×2N
matrix obtained from K by replacing each entry with its 2×2 array of real numbers.

By a theorem of [2],

(6.1) det K̃(Φ) =
∑

m∈M2

∏
loops in m

Tr(ϕγ).

Here ϕγ is the monodromy of the connection Φ around the loop γ, and Tr(ϕγ) is
its trace. Even though ϕγ depends on a starting vertex and the orientation of the
loop, the trace Tr(ϕγ) is independent of starting vertex (since the trace of a matrix
only depends on its conjugacy class) and orientation (since for matrices A ∈ SL2

we have Tr(A) = Tr(A−1)).

6.2. Flat connections and simple laminations. Suppose graph G is drawn
on a multiply-connected planar domain Σ, and Φ is a flat SL2 connection. This
means the monodromy of Φ around any cycle in G which is contractible as a cycle
in Σ, is the identity. In this case the trace of the monodromy around a loop γ only
depends on its isotopy class as a loop in Σ. In other words two loops in G which
are isotopic as loops in Σ, have monodromies with the same trace.

A simple lamination is an isotopy class of finite collections of pairwise disjoint
simple closed loops on Σ. Let Λ2 be the collection of simple laminations.

When Φ is flat we can group the terms in the sum (6.1) according to their
isotopy classes:

(6.2) det K̃(Φ) =
∑
λ∈Λ2

CλTr(ϕλ)

with Cλ ∈ Z≥0.
By a Theorem of Fock and Goncharov [3], the functions Tr(ϕλ) as λ runs over

Λ2, considered as functions of Φ, are linearly independent and in fact form a linear
basis for the regular (i.e. polynomial) functions on the character variety (the space
of flat SL2-local systems Φ modulo gauge). As a consequence Cλ can be in principle

determined from det K̃(Φ) as Φ varies over flat connections. Mysteriously, even

though for a finite graph det K̃(Φ) is a polynomial function of the matrix entries,
and the sum (6.2) is a finite sum, it is not at all clear how to extract the individual
Cλ from it.

Problem 5. How can one extract Cλ from det K̃(Φ) as in (6.2)?

For an example where we know how to extract these coefficients, consider the
simplest nontrivial case when Σ is an annulus. Suppose graph G is drawn on an
annulus with flat connection having monodromy A around the nontrivial isotopy
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i j

k

Figure 5. Simple laminations on a pair of pants consist in three
kinds of loops: those surrounding p1, p2 or both.

class γ, the generator of π1(Σ). Then a simple lamination on G just consists in some
number n of copies of loops each isotopic to γ (we are ignoring orientation). The
isotopy classes Λ2 are thus in correspondence with the set of nonnegative integers.
We can write

det K̃(A) =

∞∑
j=0

CjTr(A)j .

From this expression it is easy to extract Cj : let Tr(A) = z, then the Cj are power

series coefficients of det K̃(A).
The next simplest planar surface is a disk with two small disks p1, p2, removed

(also known as a “pair of pants”). In this case the space Λ2 has a simple param-
eterization by (Z+)

3 where (i, j, k) corresponds to the lamination with i, j, and k
loops surrounding respectively p1 only, p2 only or both p1 and p2, see Figure 5. If
A,B are the monodromies around p1, p2 respectively then given any x, y, z ∈ C∗

we can choose A,B in SL2(C) so that x = Tr(A), y = Tr(B), z = Tr(AB). Then
one can extract Ci,j,k by a contour integral

Ci,j,k =
1

(2πi)3

∫
(S1)3

detK(Φ)

xiyjzj
dx

x

dy

y

dz

z
.

For a general punctured surface Fock and Goncharov [3] describe a different
(and orthogonal) basis on the space of laminations, the “Peter-Weyl basis”, and
show that the basis {Tr(ϕλ)}λ∈Λ2

is obtained from the Peter-Weyl basis by an
upper triangular transformation. One route to solving Problem 5 would be to write
down this base-change matrix.

7. n-fold dimer model

7.1. n-multiwebs. An n-multiweb, or n-fold dimer cover in G is a function
m : E → {0, 1, 2, . . . , n} which sums to n at each vertex. So a 1-multiweb is a dimer
cover and a 2-multiweb is a double dimer cover. A union of n single dimer covers
is an n-multiweb, and every n-multiweb occurs this way (although not uniquely).

Let Mn be the set of n-multiwebs of G. The natural probability measure on
Mn is, like in the double dimer case, the projection of the uniform measure on
Mn under the standard map Mn → Mn. Unlike the n = 2 case, the size of the
preimage is difficult to compute in general, in fact #P-complete: if n = 3 and a
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Figure 6. 3-coloring of the half-edges of G.

3-multiweb is a trivalent graph (that is, all edges have multiplicity 1), then the
triples of dimer covers in the preimage are in bijection with edge 3-colorings, or
Tait colorings. Tait colorings are colorings of the edges with three colors so that
each color appears at each vertex. For planar graphs Tait colorings are dual to
proper 4-colorings of the vertices of the dual graph.

7.2. Kasteleyn matrix. Consider G a planar bipartite graph with an SLn-
local system Φ. Let K = (Kwb) be a Kasteleyn matrix for G; K is an N × N

matrix with entries in Mn(R). Let K̃ be the nN ×nN matrix obtained from K by
replacing each entry with its n× n array of reals.

By a theorem of [2],

(7.1) det K̃(Φ) =
∑

m∈Mn

Tr(ϕm)

where we still need to define the trace of an n-multiweb with an SLn-connection;
see the next section.

7.3. Trace of a 3-multiweb. The trace of an n-multiweb m is not simple to
define; it is a contraction of n-tensors defined at each vertex. We refer to [2] for
the general definition and give here a working definition for n = 3. We cut each
edge of G into two half-edges, one associated with each of its vertices. We consider
colorings c of the half-edges of m with three colors {1, 2, 3}, so that an edge of
multiplicity j ∈ {0, 1, 2, 3} gets a set of j colors, and so that all colors appear at
each vertex of G. See Figure 6.

Then on an edge e of multiplicity j we have two sets of colors S, T of size j,
with S located near the white vertex and T near the black vertex. We define

(7.2) Tr(c) =
∑

colorings c

sgn(c)
∏
e

(ϕbw)
T
S

where (ϕ)TS denotes the S, T minor of ϕ. Here sgn(c) is a sign depending on the
cyclic order of colors at each vertex: at a black vertex if the colors are in counter-
clockwise order we get sign + and otherwise sign −, and this convention is reversed
at a white vertex; the product of these signs over all vertices is sgn(c). (For edges
with multiplicity the colors are assumed in natural order within that set.)

When Φ is the identity connection, and m is planar, |Tr(m)| is the number of
Tait colorings of m (see [2]). In other words, all nonzero terms of (7.2) have the
same sign. The global sign of Tr(m) is unimportant since it depends on an artificial
choice of vertex ordering.
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Figure 7. Relations between 3-multiwebs: a loop can be removed,
increasing the weight of the remaining web by a factor of 3; a bigon
can be replaced with a single edge as shown multiplying the weight
by 2; a doubled edge can be replaced with a single edge as shown,
a square face can be resolved into a linear combination of two webs.

7.4. Flat connections and reduced 3-webs. Suppose G is drawn on a
multiply-connected planar domain Σ, and Φ is a flat SL3 connection.

A vertex in a 3-multiweb is trivalent if it has three adjacent edges of multiplicity
1. A 3-multiweb consists in a collection of trivalent vertices connected in pairs by
chains of edges with multiplicities alternating between 1 and 2 along the chains.

We say a 3-multiweb is reduced or nonelliptic if each component, considered as
a planar graph by itself, has no contractible faces with 0, 2 or 4 trivalent vertices.

There are certain skein relations by which the trace of any 3-multiweb can be
written as a linear combination of traces of reduced 3-multiwebs (see Figure 7).
The set of isotopy classes of the reduced 3-multiwebs which arise from reducing a
given web are well defined.

As a consequence for a flat SL3-connection we can group the terms in the sum
(7.1) according to isotopy classes of reduced 3-multiwebs:

(7.3) det K̃(Φ) =
∑
λ∈Λ3

CλTr(ϕλ).

By a Theorem of Sikora and Westbury [10], the functions Tr(λ) as λ runs over
Λ3 form a linear basis for the regular (i.e. polynomial) functions on the character
variety of flat SL3-local systems modulo gauge. As a consequence Cλ can be in
principle determined from det K̃(Φ) as Φ varies over flat connections.

Problem 6. How can one extract Cλ from det K̃(Φ)?

Applying the skein relations to a non-reduced 3-multiweb results in a collection
of reduced webs which depends on the order in which the skein relations are applied.
Even though the isotopy classes of the reduced web are well-defined, the individual
webs themselves will depend on the order. Is there a way to make a canonical choice
in this reduction process, so that starting from a random 3-multiweb we arrive at
a well-defined, canonical probability measure on reduced 3-multiwebs?
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