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Abstract. Enumeration of tilings is the mathematical study concerning the total num-
ber of coverings of regions by similar pieces without gaps or overlaps. Enumeration of
tilings has become a vibrant subfield of combinatorics with connections and applications
to diverse mathematical areas. In 1999, James Propp published his well-known list of
32 open problems in the field. The list has got much attention from experts around
the world. After two decades, most of the problems on the list have been solved and
generalized. In this paper, we propose a set of new tiling problems. This survey paper
contributes to the Open Problems in Algebraic Combinatorics 2022 conference (OPAC
2022) at the University of Minnesota.

1. Introduction

Enumeration of tilings is a subfield of combinatorics studying the total number of
coverings (called “tilings”) of regions by similar pieces without gaps or overlaps. The
first major result of the enumeration of tilings is usually credited to Percy Alexander
MacMahon (1854–1929) with his beautiful formula for the number of lozenge tilings of a
hexagon in the triangular lattice. However, MacMahon did not study tilings; instead, he
worked on the enumeration of plane partitions. More than 100 years ago, he proved his
celebrated theorem on the number of plane partitions fitting in a given box [74]. Much
later (in the 1980s), G. David and C. Tomei showed a simple bijection between lozenge
tilings of a centrally symmetric hexagon of side-lengths a, b, c, a, b, c (in cyclic order) and
plane partitions fitting in an a× b× c-box [25], as in Figure 2.3. (Strictly speaking, David
and Tomei only showed the bijection for the case a = b = c; however, their bijection
could be easily extended for the general case.) This way, MacMahon’s theorem implies
a product formula for the tiling number of a hexagon. Since then, MacMahon has been
considered as one of the founding fathers of the field.

Actually, tiling-counting problems in the square lattice have already been investigated
here and there for decades before the David–Tomei bijection, say under the form of small
mathematical puzzles. For instance, no one really knows the author of the folklore puzzle
on the number of ways to cover a rectangular stripe of width 2 by domino pieces1. Several
results of the same flavor appeared in recreational and discrete mathematics, for instance,
the work of David Klarner in the 1960s [47].

A couple of significant results in the enumeration of tilings come from statistical physics.
In the early 1960s, the physicists P.W. Kastelyn [46] and H.N.V. Temperley and M.E.
Fisher [90] independently found an explicit formula for the number of dimer configurations
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Figure 2.1. Three orientations of the lozenges.

of a rectangular grid graph. This result equivalently gives the enumeration of domino
tilings of a rectangle. It would be a flaw here if we do not mention the well-known result
of Fisher and Stephenson [30] concerning interactions of holes in dimer systems on the
square lattice. Similarly, we cannot ignore the 1990 classical articles of J.H. Conway and
J.C. Lagarias [22] and W. Thurston [91] investigating the connection between tilings and
group theory.

In 1999, James Propp published his well-known article, “Enumeration of Matchings:
Problems and Progress” [77], tracking the progress on a list of 32 open problems in the
field. He presented this list in a 1996 lecture as part of the special program on algebraic
combinatorics organized at MSRI. In a review on MathSciNet of the American Mathe-
matical Society (AMS), Christian Krattenthaler (Professor at the University of Vienna)
wrote about this list of problems: “This list of problems was very influential; it called
forth tremendous activity, resulting in the solution of several of these problems (but by
no means all), in the development of interesting new techniques, and, very often, in re-
sults that move beyond the problems.” The enumeration of tilings has become a vibrant
subfield of enumerative and algebraic combinatorics with connections and applications
to diverse areas of mathematics, including representation theory, linear algebra, cluster
algebra, group theory, mathematical physics, graph theory, probability, and discrete dy-
namical systems, just to name a few. We also refer the reader to the excellent survey
(also by Propp) [79] for many connections and applications of the enumeration of tilings.

As most of Propp’s problems have been solved, we would like to propose a new set of
tiling problems. This batch of problems is independent of Propp’s list; we do not include
here the still-open problems from the 1999 list. The author does not attempt to collect
all open problems in the field of enumeration of tilings. The choice of problems in this
paper reflects the author’s personal taste.

2. Weighted Enumerations of Lozenge Tilings

Weighted enumeration is usually more challenging and often gives more insights than
‘plain’ counting. This section is devoted to the weighted enumerations of lozenge tilings
of regions in the (regular) triangular lattice. We orient the triangular lattice so that it
accepts horizontal lattice lines. The lozenges (the unions of two adjacent unit triangles)
in the triangular lattice have three possible orientations: left, vertical, and right, as in
Figure 2.1.

We will frequently mention the following three well-known tiling enumerations of the
centrally symmetric hexagon (see Figure 2.2(a)), the semi-hexagon with dents on the
base (see Figure 2.2(b)), and the halved hexagon (illustrated in Figure 2.2(c)). The
enumeration of tilings of the hexagon of side-lengths a, b, c, a, b, c (in counter-clockwise
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Figure 2.2. Three popular regions in the enumeration of lozenge tilings:
(a) the quasi-regular hexagon, (b) the semi-hexagon with dents on the base,
and (c) the halved hexagon. Sample tilings are shown in the second row.

order, starting from the north side2) is credited to P. A. MacMahon [74] in the early
1900s. However, MacMahon did not work on tilings; what he proved is a more general
result (see Theorem 1) on the enumeration of plane partitions fitting in a given box (or
‘boxed plane partitions ’). The tiling enumeration of the semi-hexagon with dents on the
base is due to H. Cohn, M. Larsen, and J. Propp [20, Proposition 2.1] when they give a
bijection between lozenge tilings of the region and the semi-strict Gelfand–Tsetlin patterns
[36]. It is well-known that the lozenge tilings of a dented semi-hexagon also correspond
to the column-strict plane partitions (or reverse semi-standard Young tableaux ). The
enumeration of the halved hexagon was first found by R. Proctor [76, Corollary 4.1] in
the form of the number of a particular class of staircase plane partitions. His result also
implies the enumeration of the transpose-complementary plane partitions, one of the ten
symmetry classes of plane partitions [85].

2.1. Generalized boxed plane partitions. A plane partition can be defined as a rect-
angular array of non-negative integers with weakly decreasing rows and columns. One can
view a plane partition as a monotonic stack of unit cubes fitting in a given rectangular
box, and the latter, in turn, are in bijection with lozenge tilings of a quasi-regular hexagon
[25]. For example, we can write the entries of the plane partition π in the right picture of

2From now on, we always list the side-lengths of hexagonal regions in this order.
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Figure 2.3. Correspondence between lozenge tilings of a hexagon, stacks
of unit cubes fitting in a rectangular box, and plane partitions. The picture
first appeared in [58].

Figure 2.3 on a rectangular board of the same size (in this case, a 3× 4 board) embedded
on the plane Oij, and we place the corresponding number of unit cubes on each entry of
the board. This way, one can interpret the plane partition π as a monotonic stack of unit
cubes in the middle picture of Figure 2.3. This stack, in turn, can be projected on the
plane i + j + k = 0 to obtain the lozenge tiling of a hexagon shown in the left picture.
From this point of view, MacMahon’s classical theorem [74] on boxed plane partitions can
be stated in the language of the volume generating function of the stacks as follows.

Let q be an indeterminate. The q-factorial is defined as [n]q! :=
∏n

i=1
1−qn
1−q , where

[0]q! = 1; and the q-hyperfactorial is Hq(n) := [0]q![1]q! . . . [n− 1]q!, where Hq(0) = 1.

Theorem 1 (MacMahon’s Theorem [74]). For non-negative integers a, b, c∑
π

q|π| =
a∏
i=1

b∏
j=1

c∏
k=1

qi+j+k−1 − 1

qi+j+k−2 − 1

=
Hq(a)Hq(b)Hq(c)Hq(a+ b+ c)

Hq(a+ b)Hq(b+ c)Hq(c+ a)
,(2.1)

where the sum is taken over all monotonic stacks π fitting in an (a×b×c)-box, and where
|π| denotes the volume of π.

Setting q tend to 1, one obtains the tiling number of the quasi-regular hexagon from
the above theorem.

The beauty of formula (2.1) has inspired a large body of work, focusing on the enumer-
ation of lozenge tilings of hexagons with defects. Put differently, MacMahon’s theorem
gives a weighted enumeration of lozenge tilings of a hexagon. As the enumeration is a func-
tion in q, we often call it a “q-enumeration.” Unfortunately, such elegant q-enumerations
are very rare in the domain of enumeration of lozenge tilings. Besides the three new q-
enumerations below, only a few are known (see, e.g., [50, 85, 86] and the list of references
therein).

In [18, 57, 58], MacMahon’s classical Theorem 1 has been generalized by investigating
q-enumerations of several families of hexagons with defects on the boundary. We usually



PROBLEMS IN THE ENUMERATION OF TILINGS 5

(b)

a

b

c

d

ef

x+c y+b

x+
z+

d+
e+

f

z+
b

x+
a

y+
z+

d+
e+

f

y+
a

z+
c

x+y+d+e+f

1

2

3

4

5

6

7

8

9 10

a

b

c

d

ef

x+c y+b
x+

z+
d+

e+
f

z+
b

x+
a

y+
z+

d+
e+

f

y+
a

z+
c

x+y+d+e+f

(a)

i
j

k

O

Figure 2.4. (a) Viewing a lozenge tiling of a hexagon with three dents as
a stack of unit cubes fitting in a compound box. (b) The empty compound
box with the floors of the rooms labeled by 1, 2, . . . , 10. The picture first
appeared in [57].

call this type of defects “dents.” In order to give an illustrated example, let us focus on
only the main result in [57].

Our region here is a 9-parameter generalization of the dented hexagon that first ap-
peared in Problem 33 on Propp’s well-known list of open problems [77]. In particular, we
consider a certain hexagon with three bowtie-shaped dents on three non-consecutive sides,

denoted by F

x y z
a b c
d e f

. We view the lozenge tilings of a F -type region as monotonic

stacks of unit cubes fitting in a compound box B = B

x y z
a b c
d e f

, which is the union of

10 ‘rooms’ (see Figure 2.4(a)). In Figure 2.4(b), we have a picture of the lozenge tiling
corresponding to the empty stack, and this also gives a 3-D picture of the compound box
B. The floors of the rooms are labelled by 1, 2, . . . , 10. One readily sees that the stacks
of unit cubes here have the same monotonicity as the ordinary plane partitions (namely,
the tops of the columns are weakly decreasing along the directions of the i- and j-axes).
Like the case of MacMahon’s theorem, the volume generating function of these stacks is
always given by a simple product formula in terms of q-hyperfactorials.

3This problem was first solved by T. Eisenkölbl [27].
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Theorem 2 (Theorem 1.2 in [57]). For non-negative integers a, b, c, d, e, f, x, y, z∑
π

q|π| =

Hq(x)Hq(y)Hq(z)Hq(a)2 Hq(b)
2 Hq(c)

2 Hq(d)Hq(e)Hq(f)Hq(d + e + f + B)4

Hq(a + d)Hq(b + e)Hq(c + f)Hq(d + e + B)Hq(e + f + B)Hq(f + d + B)

× Hq(A + 2B)Hq(A + B)2

Hq(A + B + x)Hq(A + B + y)Hq(A + B + z)

× Hq(a + b + d + e + B)Hq(a + c + d + f + B)Hq(b + c + e + f + B)

Hq(a + d + e + f + B)2 Hq(b + d + e + f + B)2 Hq(c + d + e + f + B)2

× Hq(a + d + x + y)Hq(b + e + y + z)Hq(c + f + z + x)

Hq(a + b + y)Hq(b + c + z)Hq(c + a + x)

× Hq(A− a + B + z)Hq(A− b + B + x)Hq(A− c + B + y)

Hq(b + c + e + f + B + z)Hq(c + a + d + f + B + x)Hq(a + b + d + e + B + y)
,(2.2)

where the sum is taken over all monotonic stacks π fitting in the compound box B =

B

x y z
a b c
d e f

, and where A = a+ b+ c+ d+ e+ f , B = x+ y + z.

We believe that there are more elegant q-enumerations of lozenge tilings waiting for us
to explore.

Problem 1. Find more dented regions whose corresponding volume generating functions
are given by simple product formulas.

We hope that, after collecting enough examples of nice q-enumerations, we can solve
the following problem:

Problem 2. Characterize the compound boxes, which yield nice volume generating func-
tions.

It is worth noticing that the above “stack-box model” does not work well when our
regions have “holes” (i.e., some portions removed from its interior). In this case, there
may be more than one way to lift a lozenge tiling to a stack of unit cubes.

2.2. Elliptic Weight. A. Borodin, V. Gorin, and E. M. Rains [4] provide a different
way to define weight for tilings, called “elliptic weight,” as follows. Then the weight
of a tiling is the product of the weights of its lozenges. We will adapt and specialize
Borodin–Gorin–Rains’ elliptic weight in this section.

The j-axis of our coordinate runs along a lattice line with the unit equal to 1/2 times
the side-length of a lozenge. The i-axis is perpendicular with the j-axis at a lattice vertex
(this vertex is the origin of our coordinate system); the unit on the i-axis is equal to√

3/2 times the side-length of a lozenge. Figure 2.5 shows a particular placement of our
coordinate system.

Only one of the three types of lozenges, as shown in Figure 2.1, have the diagonals
parallel to the i- and j-axes. (In Figure 2.5, these lozenges are the right lozenges.) Each
lozenge of this type with center at the point (i, j) is weighted by

(2.3) wt1(i, j) =
Xqj + Y q−j

2
,
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Figure 2.5. Assigning weight to lozenges.

where X, Y, q are three indeterminates. (The weight does not depend on i.) All other
lozenges have weight 1. The weight of a tiling is now the product of weights its lozenges.
In the rest of the paper, we use the notation T(R) for the sum of weights of all tilings
of a weighted region R. We call T(R) the tiling generating function of R. When R is
unweighted, T(R) is exactly the tiling number of R.

This weight behaves very well and could be considered as the generalization of the
“volume weight” investigated in the previous section. Indeed, when X = 2 and Y = 0,
the weight becomes wt2(i, j) = qj. With the weighting system as in Figure 2.5, each tiling
τ of the hexagon is weighted by C · q2·V ol(τ), where V ol(τ) is the volume of the stack of
unit cubes corresponding to the tiling τ , and C is a constant independent from the choice
of the tiling τ . Sometimes, we call wt2 the “natural weight” (as it is essentially equivalent
to the weight of the boxed plane partitions).

We are also interested in the following specialization of wt1:

(2.4) wt3(i, j) =
qj + q−j

2
.

One can view wt3 as a symmetrization of wt2, and we often call wt3 the “symmetric
weight.” As mentioned in the previous section, the natural weight wt2(i, j) = qj does not
often give nice tiling generating functions. In contrast, the symmetric weight wt3(i, j)
behaves much better. For example, it has been shown by M. Ciucu, T. Eisenkölbl, C.
Krattenthaler, and D. Zare [13] that the “plain” tiling number (unweighted counting of
tilings) of a “cored hexagon” is always given by a simple product formula (see Figure
2.10). However, there is no such formula for the tiling generating function associated
with wt2. On the other hand, as shown by H. Rosengren [81], the symmetric weight wt3

gives a simple product formula for the tiling generating function of the cored hexagon.
We have observed a similar fact for a halved hexagon with defects [68]: the natural weight
wt2 does not give a nice q-enumeration, but the symmetric weight wt3 does.

Despite its very nice behavior, the study about the weight wt3 is still extremely limited.
It deserves more attention from experts in the field. It would be interesting to see if the
weight wt3 yields nice tiling generating functions for known regions.
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Figure 2.6. Three kinds of quartered Aztec diamonds of order 6. The
figure first appeared in [52].

(b)(a)

Figure 2.7. (a) A quartered Aztec rectangle and (b) A quartered hexagon.

Problem 3. Find the tiling generating functions with respect to the symmetric weight
wt3 for known families of regions. For instance, one would like to find the tiling gener-
ating function for the “S-cored hexagon” introduced by Ciucu and Krattenthaler [17] as
a generalization of the cored hexagon in [13] (see Figure 5.10 for an example of S-cored
hexagon). This would give a generalization for Rosengren’s enumeration in [81].

As most of the known tiling enumerations are unweighted ones, there would be many
things to do with this problem.

All the weights wt1,wt2,wt3 can be viewed as some rational functions in z = qj. We
want to find more weights of this type, such that they give nice tiling generating functions,
say for several well-known families of regions, like the hexagons, the semi-hexagons, and
the halved hexagons.

Problem 4. Find new “nice” weights that are rational functions in qj.
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Jockusch and Propp [41] introduced the “quartered Aztec diamonds” as quarters of an
Aztec diamond divided by two zigzag cuts passing the center (see Figure 2.6). These
regions have been re-investigated and generalized in [52, 53, 54, 55]. These papers showed
that one could transform a “quartered Aztec rectangle” (a natural generalization of the
quartered Aztec diamond) into a quartered hexagons using certain local graph transfor-
mations. See Figure 2.7 for an example of a quartered Aztec rectangle and a quartered
hexagon. It turns out the tiling numbers of the two regions are only different by a mul-
tiplicative factor, which is a perfect power of 2. As a nice q-formula for tiling generating
function of the quartered hexagon has been found in [68], one would like to find such a
q-formula for the quartered Aztec diamond and quartered Aztec rectangles.

Problem 5. Find a nice q-enumeration for the domino tilings of the quartered Aztec
diamond and quartered Aztec rectangle.

2.3. Unusual weights. A special weight of lozenge tilings of a hexagon has been inspired
by the well-known trace formula of R. Stanley. By letting b→∞ in MacMahon’s classical
formula in Theorem 1, we obtain another well-known formula of MacMahon:

(2.5)
∑

π∈P(a,c)

q|π| =
a∏
i=1

c∏
i=1

1

1− qi+j−1
,

where P(a, c) denotes the set of plane partitions with at most c rows and a columns.
Generalizing MacMahon’s formula (2.5), Stanley [82] proved the trace generating function:

(2.6)
∑

π∈P(a,c)

q|π|ttr(π) =
a∏
i=1

c∏
i=1

1

1− tqi+j−1
,

where the trace is defined by tr(π) :=
∑

i πi,i. E. R. Gansner [34, 35] later extended
Stanley’s work by showing that

(2.7)
∑

π∈P(a,c)

∏
−c<`<a

q
tr`(π)
` =

a−1∏
i=0

c−1∏
j=0

(
1−

j∏
`=−i

q`

)−1

,

where the `-trace is defined as tr`(π) :=
∑

j−i=` πi,j.
Strictly speaking, Stanley’s and Gansner’s trace formulas above do not give any weighted

enumerations for boxed plane partitions (equivalently, lozenge tilings of hexagons), as
there is no upper bound for the parts of plane partitions. Recently, S. Kamioka [42]
provides elegant boxed versions for the above formulas.

For a plane partition π of shape λ and a number 1 ≤ k ≤ π1,1, we define the k-truncation
π(k) of π to be the plane partition obtained from π by removing all entries less than k.
The shape λ(k)(π) of π(k) is called the k-cross-section of π. In particular, we have π(1) = π
and λ(1)(π) = λ (see Figure 2.8 for the interpretation of the cross-sections). The Durfee
square of a partition is the largest square fitting in its Ferrers diagram.

We often use the standard q-Pochhammer symbol in our tiling formulas:

(2.8) (x; q)n :=


1 if n = 0;

(1− x)(1− xq) · · · (1− xqn−1) if n > 0;
1

(1−xq−1)(1−xq−2)···(1−xqn)
if n < 0.
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λ1(π) =λ3(π) = λ2(π) =π

Figure 2.8. The plane partition π in the form of a stack of unit cubes and
three cross-sections of π.

Strictly speaking, the above q-Pochhammer symbol is not well-defined when n is a negative
integer and a = qk for some 1 ≤ k ≤ −n. However, this is not the case in our paper.

Theorem 3 (Theorem 9 in [42]).

(2.9)
∑

π∈P(a,b,c)

q|π|ttr(π)

π1,1∏
k=1

(qn−k+1; q)Dk(π)

(tqn−k+1; q)Dk(π)

=
a∏
i=1

b∏
j=1

c∏
k=1

1− tqi+j+k−1

1− tqi+j+k−2
,

where Dk(π) is the side-length of the Durfee square of the k-cross-section λ(k)(π) of π.

This enumeration can be viewed as a weighted enumeration of the lozenge tilings of
a hexagon. In particular, the tiling τ = τπ corresponding to the plane partition π is

weighted by wtK(τ) = q|π|ttr(π)
∏π1,1

k=1

(qn−k+1;q)Dk(π)
(tqn−k+1;q)Dk(π)

. It is worth noticing that Kamioka

also proved a finite version of Gansner’s formula (see Theorem 17 in the same paper). He
later generalizes further the results to arbitrary shapes in [43].

Unlike the weights wt1,wt2,wt3 in the previous section, Kamioka’s theorem does not
provide the weights for lozenges. However, one could define the corresponding lozenge-
weights as follows. Divide the quasi-regular hexagon Hex(a, b, c) into hooks as in Figure
2.9. Each right lozenge is labeled as in the figure. Now, each right lozenge with label x is
weighted by q−x, except for the ones intersecting with the dotted line, which are weighted

by (tq)−x (qn;q−1)n−x
(tqn;q−1)n−x

. All lozenges of different orientations are weighted by 1. It is easy

to see that the product of lozenge-weights in tiling τπ is equal to C · wtK(τπ), where C
is a constant independent from the choice of tilings. We get back Kamioka’s weight by
normalizing the lozenge-weights. See [56] for more details.

In his classical paper [85], Stanley lists ten symmetry classes of plane partitions. Each
of the ten classes is equivalent to a particular type of symmetric tilings of a hexagon. We
would expect the existence of Kamioka’s trace formula for symmetric tilings.

Problem 6. Find versions of Kamioka’s trace formula for symmetric tilings.

We conclude this subsection by investigating another unusual weight of tilings inspired
by the (-1)-phenomenon found by J. Stembridge [88], and more generally, the Cyclic
Sieving Phenomenon by V. Reiner, D. Stanton, and D. White [80]. In [13], the authors
proved striking formulas for specific (−1)-enumerations of the tilings of the cored hexagons
and its cyclically symmetric tilings (see Theorems 4, 5, and 7 therein). In particular, if
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Figure 2.9. The weight for lozenge tiling inspired by Kamioka’s formula.

we extend the base of the triangular hole in the cored hexagon to the right, then each
tiling τ is weighted by (−1)n(τ), where n(τ) is the number of edges of lozenges of the
tiling τ contained in the extended side (see Figure 2.10(a); in this case n(τ) = 2). The
critical point of the definition of n(τ) is that when we encode each tiling as a family of the
non-intersecting lattice paths in the spirit of the well-known Lindström–Gessel–Viennot
Theorem (see, e.g., [37, 71, 87]), the sign of the path family is exactly (−1)n(τ). For the case
of cyclically symmetric tilings, the weight is quite different. We consider the fundamental
region of the cyclically symmetric tilings (which is illustrated as the parallelogram with
bold sides in Figure 2.10(b)), then each tiling is weighted by (−1)n6(τ), where n6(τ) is the
sum of the horizontal distances between the shaded lozenges and the lower-left border of
the fundamental region (n6(τ) = 0 + 0 + 1 + 2 + 2 = 5 in Figure 2.10).

One would ask for similar (−1)-enumerations for the following three generalizations of
the cored hexagons:

(1) the “S-cored hexagons” (i.e., a hexagon with a cluster of four triangles removed
from the center; see Figure 5.9(a)) in [17],

(2) the “F -cored hexagons” (i.e., a hexagon with an array of alternating triangles
removed from the center) in [11], and

(3) the hexagons with three arrays of triangles removed in [61].

It is worth noticing that the unweighted enumeration of cyclically symmetric tilings of a
S-cored hexagon has been provided by Ciucu in [12].

Problem 7. (a) Find the (−1)-enumerations of tilings of the three generalizations of core
hexagons listed above.

(b) Find the (−1)-enumeration of cyclically symmetric tilings for the S-cored hexagon.
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Figure 2.10. Weight in the (-1)-enumerations of a cored hexagon.

Recall that Rosengren proved a simple product formula for the tiling generating of the

cored hexagons using the weight wt3 = qj+q−j

2
. We note that the versions of Rosengren’s

q-enumeration for the three generalizations of the cored hexagons are not known at this
point.

Problem 8. Find a version of Rosengren’s q-enumeration for each of the three general-
izations of the cored hexagons above.

Inspired by the above (−1)-enumeration, we would like to find a signed version of
Rosengren’s q-enumeration for the cored hexagons, and more generally, for its generaliza-
tions.

Problem 9. (a) Find a signed version of Rosengren’s q-enumeration for the cored hexagon.
(b) Generalize part (a) to the three generalizations of the cored hexagons above.

3. Shuffling Phenomenon

This section is devoted to an exciting property of tilings, the “shuffling phenomenon”4,
that was first introduced in [67]. The minor modification in a region would lead to an
unpredictable change of the tiling number. However, in some particular situations, the
tiling number is changed by only a simple multiplicative factor. See e.g. [6, 7, 19, 21, 31,
32, 60, 62, 64, 68] for recent development of the phenomenon.

Let x, y, z, u, d be nonnegative integers, such that u, d ≤ n. Consider a symmetric
hexagon of side-lengths x+n−u, y+u, y+d, x+n−d, y+d, y+u. We remove u up-pointing
and d down-pointing unit triangles along the horizontal lattice line l that contains the west
and the east vertices of the hexagon. Let U = {s1, s2, . . . , su} and D = {t1, t2, . . . , td}
denote the position sets of the up-pointing and down-pointing removed unit triangles
(ordered from left to right), respectively. Assume that n is the size of the union U ∪D.
Denote by Hx,y(U ;D) the hexagon with the above setup of removed unit triangles. We
call it a doubly–dented hexagon. We now allow to ‘shuffle’ the positions of the up- and

4The “shuffling phenomenon” here is not related to the “domino shuffling” operation in [28, 29].
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Figure 3.1. The region H4,3(2, 4, 5, 8, 11; 4, 9, 11, 12) (left) and a lozenge
tiling of its (right). The back and shaded triangles indicate the unit triangles
removed.

down-pointing unit triangles in the symmetric difference U∆D to obtain new position
sets U ′ and D′, respectively. The following theorem shows that the above shuffling unit
triangles changes the tiling number of the region by only a simple multiplicative factor.
Moreover, the factor can be written in a similar form to Cohn–Larsen–Propp’s tiling
formula of a semi-hexagon [20, Proposition 2.1].

Theorem 4 (Shuffling Theorem; Theorem 2.1 in [67]). For nonnegative integers x, y, u, d, n
(u, d ≤ n) and four ordered subsets U = {s1, s2, . . . , su}, D = {t1, t2, . . . , td}, U ′ =
{s′1, s′2, . . . , s′u}, and D′ = {t′1, t′2, . . . , t′d} of [x + y + n], such that U ∪ D = U ′ ∪ D′ and
U ∩D = U ′ ∩D′. We have

(3.1)
T(Hx,y(U ;D))

T(Hx,y(U ′;D′))
=

∏
1≤i<j≤u

sj − si
j − i

·
∏

1≤i<j≤d

tj − ti
j − i∏

1≤i<j≤u

s′j − s′i
j − i

·
∏

1≤i<j≤d

t′j − t′i
j − i

,

recall that we use the notation T(R) for the number of tilings of the unweighted region R
(when R is weighted, T(R) denotes the tiling generating function of R).

We would like to emphasize that neither Hx,y(U ;D) nor Hx,y(U ;′D′) has a nice tiling
number in general. We also note that several stronger versions of the above Shuffling
Theorem were provided in [67].

Denote by Sa,b(t1, t2, . . . , tb) the semihexagon of side-lengths a, b, a+b, b (in counter-clock
wise order, from the top side) with the dents at the positions t1, t2, . . . , tb on the base. By,
say, [86, equation (7.105)] and Cohn–Larsen–Propp’s enumeration [20, Proposition 2.1],
we have5

(3.2) T(Sa,b(t1, t2, . . . , tb)) =
∏

1≤i<j≤b

tj − ti
j − i

= sλ({t1,...,tb})(1
b),

5The notation 1n in the argument of the Schur function sλ({t1,...,tb})(1
b) stands for n arguments equal

to 1.



14 TRI LAI

where λ({t1, . . . , tb}) is the the partition (tb − b+ 1, . . . , t2 − 1, t1). On the other hand, it
is not hard to see that we also have

T (Hx,y(U ;D)) =
∑
|S|=y

T(Sx+n−u,u+y(U ∪ S)) T(Sx+n−d,d+y(D ∪ S))

=
∑
|S|=y

sλ(U∪S)(1
u+y)sλ(D∪S)(1

d+y),(3.3)

where the sum runs over all y-subsets S of the complement of U ∪D.
Indeed, each tiling of Hx,y(U ;D) contains exactly y vertical lozenges along the axis l.

Moreover, these vertical lozenges must be at the positions in the complement of U ∪D.
Grouping those tilings which correspond to the same set of vertical lozenges, one could
write the tiling number T(Hx,y(U ;D)) as the sum of tiling numbers:

T(Hx,y(U ;D)) =
∑
|S|=y

T(HS
x,y(U ;D)),

where HS
x,y(U ;D) denotes the region obtained from Hx,y(U ;D) by removing y vertical

lozenges at the positions in S. It is easy to see that each tiling of HS
x,y(U ;D) can be

separated into two tilings of two semi-hexagons by the axis l. It means that

T(HS
x,y(U ;D)) = T(Sx+n−u,u+y(U ∪ S)) T(Sx+n−d,d+y(D ∪ S)).

This implies the first identity in (3.3); the second identity follows from (3.2).
Applying (3.3), one can write our Shuffling Theorem in terms of Schur functions as

(3.4)

∑
|S|=y sλ(U∪S)(1

u+y)sλ(D∪S)(1
d+y)∑

|S|=y sλ(U ′∪S)(1
u+y)sλ(D′∪S)(1

d+y)
=

sλ(U)(1
u)sλ(D)(1

d)

sλ(U ′)(1
u)sλ(D′)(1

d)
,

where the sums are taken over all y-subsets S of the complement of U ∪D.
The q-analog of the Shuffling Theorem in [67] implies that (3.4) still holds (up to a

q-power) when 1n is replaced by the sequence (q, q2, q3, . . . , qn). It would be interesting
to know if there is a more general Schur function identity behind (3.4).

Problem 10. Find a general Schur function identity behind the shuffling phenomenon.
More particularly, find a ‘ simple condition’ under which we have the following identity

(3.5)

∑
|S|=y sλ(U∪S)(X

m+y)sλ(D∪S)(X
m+(d−u)+y)∑

|S|=y sλ(U ′∪S)(X
m+y)sλ(D′∪S)(X

m+(d−u)+y)
= C ·

sλ(U)(X
m)sλ(D)(X

m+(d−u))

sλ(U ′)(X
m)sλ(D′)(X

m+(d−u))
,

where Xm denotes the sequence of variables x1, x2, . . . , xm, and where C is a monomial
in xi’s.

It is worth noticing that Seok Hyun Byun [6] and Markus Fulmek [32] independently
found a simple alternative proof for the Shuffling Theorem by using the connections
between lozenge tilings and Schur function as in (3.2). While their proofs explain the
identity (3.4) and its q-analog, they did not solve the problem above.

By Cohn–Larson–Propp’s enumeration again, our Shuffling Theorem can be written
purely in terms of tiling numbers as

T(Hx,y(U ;D))

T(Hx,y(U ′;D′))
=

T(Sx+y+n−u,u(U)) T(Sx+y+n−d,d(D))

T(Sx+y+n−u,u(U ′)) T(Sx+y+n−d,d(D′))
.(3.6)
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Figure 3.2. Two sibling hexagons with a triad of bowties removed.

One readily sees that the two semi-hexagons in the numerator of the right-hand side of
(3.6) are obtained by dividing the doubly-dented hexagon Hx+y,0(U ;D) along the hori-
zontal axis l. More precisely, say by the Region-Splitting Lemma [57, 58], we have

T(Sx+y+n−u,u(U)) T(Sx+y+n−d,d(D)) = T(Hx+y,0(U ;D))

and
T(Sx+y+n−u,u(U

′)) T(Sx+y+n−d,d(D
′)) = T(Hx+y,0(U ′;D′)).

This means that identity (3.6) could be rewritten as

(3.7) T(Hx,y(U ;D)) T(Hx+y,0(U ′;D′)) = T(Hx,y(U
′;D′)) T(Hx+y,0(U ;D)).

Both sides of (3.7) count pairs of tilings of doubly-dented hexagons. There should be a
bijection between these sets of pairs of tilings.

Problem 11. Find a bijection that proves identity (3.7).

Several other examples of the shuffling phenomenon have been found. One of them
is the shuffling phenomenon for a hexagon with a removed “triad of bowties” [19]. We
consider the hexagon H of side-lengths x+ a+ b+ c, y+ a′+ b′+ c′, z+ a+ b+ c, x+ a′+
b′+ c′, y+a+ b+ c, z+a′+ b′+ c′. We remove from the interior of H three bowties shapes
located at the vertices of an equilateral triangle ∆ of side-length t + a′ + b′ + c′. Denote
by R = R∆

x,y,z(a, a
′, b, b′, c, c′) the resulting region (see Figure 3.2(a) for an example; the

triangle with red dotted sides indicates the triangle ∆).
We now adjust the side-lengths of the lobes in each bowtie so that the sum of the side-

lengths is unchanged. Assume that the (a, a′)-, (b, b′)-, and (c, c′)-bowties are deformed
into the (d, d′)-, (e, e′)-, and (f, f ′)-bowties, respectively, where a+a′ = d+d′, b+b′ = e+e′,
and c+ c′ = f + f ′. We now create a ‘sibling’ region R′ of R as follows. We start with the
hexagon H ′ of side-lengths x+ d+ e+ f, y+ d′+ e′+ f ′, z+ d+ e+ f, x+ d′+ e′+ f ′, y+
d + e + f, z + d′ + e′ + f ′. We now remove the above three new bowties from H ′ so that
they are located at the vertices of a triangle ∆′ of side-length t+ d′+ e′+ f ′ and that the
distances from the top, the left, and the right bowties to the north, the southeast, and
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the southwest sides of H ′ are equal to the corresponding distances in the original region.
Denote by R′ = R∆′

x,y,z(d, d
′, e, e′, f, f ′) the new region.

It has been shown that the ratio of tiling numbers of the above two regions is given
by a simple product formula [19]. We would also like to emphasize that, in general, the
tiling numbers of the regions R∆

x,y,z(a, a
′, b, b′, c, c′) and R∆′

x,y,z(d, d
′, e, e′, f, f ′) are not given

by simple product formulas (see Theorem 1 in [19]). See Figure 3.2 for an example of
x = 4, y = 6, z = 2, t = 4, a = 3, a′ = 2, b = 2, b′ = 3, c = 3, c′ = 2, d = 2, d′ = 3, e =
3, e′ = 2, f = 2, f ′ = 3; the triangles ∆ and ∆′ are the ones with red vertices in pictures
(a) and (b), respectively. We note that it actually needs three more parameters to define
the triangle ∆ and that the triangle ∆′ is uniquely determined by ∆. It means that each
of the regions R and R′ depends on 12 parameters.

We have realized that the above instance of the shuffling phenomenon could be ex-
tended to the weighted case. In particular, we consider the generating functions with the

elliptic weight wt1 = Xqj+Y q−j

2
of R∆

x,y,z(a, a
′, b, b′, c, c′) and R∆′

x,y,z(d, d
′, e, e′, f, f ′). Like the

unweighted case, these tilling generating functions are not given by any simple product
formulas; however, their ratio seems to be a simple product.

Problem 12. Prove that the ratio of tiling generating functions

T1(R∆
x,y,z(a, a

′, b, b′, c, c′))

T1(R∆′
x,y,z(d, d

′, e, e′, f, f ′))

is always given by a simple product formula. Here, we use the notations Ti(R) for the
tiling generating function of R using the weight wti, i = 1, 2, 3, as described in the previous
section.

We want to point out that each tiling generating function in the above problem depends
on fifteen parameters. Proving this theorem would be technically challenging. We note
that the conjectural formula for the above ratio has been found in the particular case
when X = 2 and Y = 0 (i.e., the case of the natural weight wt2). However, a formula in
the general case is still unknown.

Like its unweighted version, the conjecture would imply a number of results in the
weighted enumeration of lozenge tilings. Let us point out one of them. Rosengren in
[81] found an intriguing consequence of his weighted enumeration of the cored hexagons
(see Corollary 2.2 therein). Intuitively, if we reflect the removed triangle through the
center of the hexagon, then the tiling generating function of the core hexagon changes by
only a simple multiplicative factor. The conjecture (if proved) would give a conceptual
explanation for his observation. Indeed, we consider the special case when X = Y = 1,
a = d′, a′ = b = b′ = c = c′ = d = e = e′ = f = f ′ = 0, and q is replaced by

√
q. Then the

ratio between the tiling generating functions of Rx,y,z(a, 0, 0, 0, 0, 0) and (the horizontal
refection of) Rx,y,z(0, a, 0, 0, 0, 0) is exactly the ratio in Rosengren’s Corollary 2.2.

It has been shown that the original shuffling phenomenon also holds for the reflectively
symmetric tilings and centrally symmetric tilings of the doubly–dented hexagons [60, 64].
It suggests we do the same for hexagons with a triad of bowtie holes. In particular, we first
focus on the cyclically symmetric tilings, i.e., the tilings invariant under 120◦ rotations.
We note that the region R∆

x,y,z(a, a
′, b, b′, c, c′) must be cyclically symmetric itself in order

to have a cyclically symmetric tiling. More precisely, we must have x = y = z, a = b = c,
a′ = b′ = c′, and the triangle ∆ must be at the center of the region. To emphasize the
symmetric location of the triangle, we use the notation ∆0 instead of ∆.
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Figure 3.3. The hexagons with holes on three crossing lines.

Problem 13. Let x, a, a′, d, d′ be non-negative integers so that a + a′ = d + d′. Find a
formula for the ratio of tiling generating functions

Tc(R
∆0
x,x,x(a, a

′, a, a′, a, a′))

Tc(R
∆′0
x,x,x(d, d′, d, d′, d, d′))

.

Here we use the notation Tc(R) for the weighted sum of cyclically symmetric tilings of R

using the weight wt1 = Xqj+Y q−j

2
(or some specialization).

We are also interested in the shuffling phenomenon for the reflectively symmetric tilings
of hexagons with a triad of bowties. The region R∆

x,y,z(a, a
′, b, b′, c, c′) must be reflectively

symmetric itself in order to have a reflectively symmetric tiling. More precisely, we must
have y = z, b = c, b′ = c′, and the triangle ∆ must be on the symmetry axis. To emphasize
the symmetric location of the triangle, we use the notation ∆1 instead of ∆.

Problem 14. Let x, y, a, a′, b, b′, d, d′, e, e′ be non-negative integers so that a+ a′ = d+ d′

and b+ b′ = e+ e′. Find a formula for the ratio of tiling generating functions

Tr(R
∆1
x,y,y(a, a

′, b, b′, b, b′))

Tr(R
∆′1
x,y,y(d, d′, e, e′, e, e′))

.

Here we use the notation Tr(R) for the weighted sum of reflectively symmetric tilings of

R using the weight wt3 = qj+q−j

2
.

We note that in Problem 14, the tilings is weighted by wt3 = qj+q−j

2
, a special case of

the weight wt1 = Xqj+Y q−j

2
in Problem 13. Our data suggests that the general weight wt1

does not yield a nice product formula for the tiling ratio in this case.
Byun generalized the shuffling phenomenon for a triad of bowties in [19]. He showed

that the tiling number of a hexagon with holes on three crossing lines only changes by a
simple multiplicative factor if we flip the central triangular hole and then translate these
lines of holes (see Theorem 2.1 in [7]). See Figure 3.3 for an illustration. More precisely,
Byun’s region is obtained from a cored-hexagon of side-lengths n, n+ x, n, n+ x, n, n+ x
(in clockwise order, starting from the north side) with the (up-pointing) triangular hole
of side-length x in the center. We next extend the sides of the central hole to three equal
segments distinguished by three different colors in the left region. On these segments, we
put some additional holes. Byun uses twelve sequences A1, A2, . . . , A6, B1, B2, . . . , B6 to
record the position of the additional holes, for brevity, we denote A := (A1, . . . , A6) and
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B := (B1, . . . , B6). The resulting region is denoted by Hn,x(A,B). We now consider the
hexagon of side-lengths n + x, n, n + x, n, n + x, n (also in clockwise order, starting from
the north side) with a down-pointing central hole of size x. We now implant the three
segments of holes in the previous region on the extended sides of the new central hole in
the new core-hexagon. Denote the new region by Hn,x(A,B) (see the right region in the
figure).

One would like to generalize this exciting result to the tiling generating function with
respect to the weight wt1. More precise, we assign weight to lozenges in the hexagon with
holes on three crossing lines Hn,x(A,B) (resp., Hn,x(A,B)) using the weight wt1 (or some
specialization of its), with the horizontal axis running along the base and the vertical axis
passing the top (resp., bottom) vertex of the central triangular hole. We conjecture that
the ratio of the two resulting generating functions is given by a simple product formula.

Problem 15. Generalizing Byun’s Theorem 2.1(a) in [7] to tiling generating functions
using the weight wt1 (or some specialization).

Inspired by Problems 13 and 14 above, we are also interested in the symmetric version
of Problem 15 above.

Problem 16. (a) Generalizing Byun’s Theorem 2.1(b) in [7] to generating functions of
cyclically symmetric tilings using the weight wt1 (or some specialization).

(b) Investigate the ratio of generating functions of reflectively symmetric tilings of
hexagons with holes on three crossing lines.

As shown in [51, 52], in many cases, one can convert a lozenge tiling problem to a
domino tiling problem, and vice versa. It suggests the existence of a shuffling theorem for
domino tilings.

Problem 17. Find an example of the shuffling phenomenon for domino tilings.

4. Connections to Electrical networks

This section is devoted to connections between tilings and other mathematical areas.
Among many interesting connections, we focus on the connection to the study of electrical
networks. Again, we recommend the reader the excellent survey paper of James Propp
[79] for various connections and applications of the enumeration of tilings.

The study of electrical networks comes from classical physics with the work of Ohm
and Kirchhoff more than 100 years ago. A circular planar electrical network (or simply
electrical network) is a graph G = (E, V ) embedded in a disk with a set of distinguished
vertices N ⊆ V on the circle, called nodes, and a conductance function wt : E → R+.
The electrical networks were first studied systematically by Colin de Verdière [26] and
Curtis, Ingerman, Moores, and Morrow [23, 24]. We refer the reader to, e.g., for the
recent development of the topic [1, 40, 45, 69, 70, 89].

We arrange the indices 1, 2, . . . , n of a n × n matrix M in counter-clockwise order
around the circle. Let A = {a1, a2, . . . , ak} and B = {b1, b2, . . . , bk} be two sets of indices
so that a1, a2, . . . , ak, bk, bk−1, . . . , b1 appear in counter-clockwise order around the
circle. The circular minor detMB

A is defined to be the minor of M obtained from the
rows a1, a2, . . . , ak and the columns bk, bk−1, . . . , b1. When A and B are non-interlaced
around the circle, we can represent the circle minor detMB

A by a disk diagram with k
chords connecting notes ai to bi. See Figure 4.1 for examples.
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Figure 4.1. (a) A non-contiguous minor. (b) A contiguous minor that is
not a central minor. (c) A central minor.
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Figure 4.2. All 15 small central minors when n = 6.

A contiguous minor of a matrix M is a circular minor whose row indices and whose
column indices are contiguous on the circle. A (small) central minor is a non-interlaced
contiguous minor whose row indices and column indices are opposite (or almost opposite
depending on the parity of n) around the circle. There are

(
n
2

)
central minors, whether n

is even or odd. See Figures 4.1 and 4.2 for examples of these special types of minors.
Associated with an electrical network is a response matrix that measures the response

of the network to potential applied at the nodes. It has been shown that a matrix M is
the response matrix of an electrical network if and only if it is symmetric with row and
column sums equal to zero and each circular minor detMB

A is non-negative (see Theorem
4 in [23]). An electrical network is called well-connected if, for any two non-interlaced sets
of nodes A and B, there are k pairwise vertex-disjoint paths in G connecting the nodes
in A to the nodes in B, where |A| = |B| = k.

R. Kenyon and D. Wilson [45] generalize the work of Colin de Verdière [26] by showing
how to test the well-connectivity of an electrical network by checking the positivity of the(
n
2

)
central minors of the response matrix. The test is based on their interesting finding

of the connection between linear algebra, electrical networks, and tilings.

Theorem 5 (Kenyon–Wilson’s Theorem [45]). Any contiguous minor can be written as a
Laurent polynomial in central minors. Moreover, this Laurent polynomial is the generating
function of tilings of a (weighted) ‘Aztec diamond.’
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Figure 4.3. Encoding a contiguous minor as a weighted Aztec diamond.
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Figure 4.4. Illustration of the correspondence between a semicontiguous
minor (left-hand side) and the domino tilings of a region weighted by central
minors (right-hand side). The lattice points on the right-hand side are
replaced by the corresponding central minors. This picture first appeared
in [59].

See Figure 4.3 for an illustration of the theorem.
The Aztec diamond of order h with the center located at the lattice point (x0, y0) is the

region consisting of all unit squares inside the contour |x− x0|+ |y− y0| ≤ h+ 1. Elkies,
Kuperberg, Larsen, and Propp [28, 29] have shown that the number of domino tilings of
the Aztec diamond of order h is exactly 2h(h+1)/2. This work has inspired a large body of
work in the enumeration of tilings.

We are also interested in a larger family of minors, called semicontiguous minors. A
semicontiguous minor is a circular minor detMB

A , where at least one of A and B is
contiguous. Kenyon and Wilson conjectured that any semicontiguous minor could also
be written as the tiling generating function of some region on the square lattice. This
conjecture was recently proved in [59] by building a special family of regions on the
square lattice whose tiling generating functions are given by the semicontiguous minors.
In particular, our region is obtained from an Aztec rectangle (a natural generalization
of the Aztec diamond) or a special union of two Aztec diamonds by trimming the base
along a zigzag path determined by the non-contiguous index set. It would be interesting
to know if any general circular minor can be encoded as domino tilings of a region.

Problem 18. Can any circular minor be written as the tiling generating function of a
region on a square lattice? If the answer is “NO,” characterize all such circular minors.
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Figure 5.1. (a) The hexagon with four holes H5,1(2, 2). (b) A cyclically
symmetric tiling of H5,1(2, 2). This picture first appeared in [65].

5. Other problems

We consider the number of cyclically symmetric tilings of two families of hexagons with
four triangles removed as follows.

Let x, y, t, a be non-negative integers. Our first family consists of the hexagons with
side-lengths t+ x+ 3a, t, t+ x+ 3a, t, t+ x+ 3a, t, in which an up-pointing triangle of
side-length x has been removed from the center. In addition, three up-pointing triangles
of side-length a have been removed in a symmetric way along the intervals connecting
the center to the midpoints of the southern, northeastern, and northwestern sides of the
hexagon. We assume besides that the distance from the central hole to each of the three
satellite holes is 2y. Denote by Ht,y(a, x) the resulting region (see Figure 5.1 for an
example; the black triangles represent the triangles that have been removed).

The second family also consists of hexagons with four similar triangular holes; however,
the a-triangles now lie on the other side of the center, as shown in Figure 5.2. The
resulting region is denoted by Ht,y(a, x). Two simple product formulas for the numbers
of cyclically symmetric tilings of Ht,y(a, x) and Ht,y(a, x) were provided in [65] .

Recently, M. Ciucu and I. Fischer [15] conjecture a striking connection between the
whole number of tilings and the number of cyclically symmetric tilings of Ht,y(a, x).

Problem 19 (Conjecture 1 in [15]). Show that

T(Ht,y(a, x))

Tr(Ht,y(a, x))3
=

T(Ht,0(a, x))

Tr(Ht,0(a, x))3

[
y∏
i=1

(x+ 6i− 4)(x+ 3a+ 6i− 2)

(x+ 6i− 2)(x+ 3a+ 6i− 4)

]2

,(5.1)

where Tr(R) denotes the number of cyclically symmetric tilings of R.

We note that when y = 0, all four holes in Ht,0(a, x) are glued together, and the region
has the same tiling number as a cored hexagon. Recall that the number of tilings of
a cored hexagon is given by a simple product formula in [13], so the expression on the
right-hand side of (5.1) can be expressed as a simple product (see the discussion before
Conjecture 2 in [15]). As the number of cyclically symmetric tilings of Ht,y(a, x) has



22 TRI LAI

2y+2a-2

a

(a) (b)

t+
x+

3a

t

x

a

a

t

t

t+x+3a

t+
x+

3a

Figure 5.2. (a) The hexagon with four holes H5,1(2, 2). (b) A cyclically
symmetric tiling of H5,1(2, 2). This picture first appeared in [65].

been found, one only needs to find the tiling number of Ht,y(a, x) to prove the conjecture.
However, as discussed in [15], this task would not be easy.

The similarity of Ht,y(a, x) and Ht,y(a, x) suggests the existence of a nice formula for

the ratio T(Ht,y(a,x))

Tc(Ht,y(a,x))3
. However, such a formula was not provided in [15]. It would be

interesting to obtain that formula.

Problem 20. Find a formula for the ratio of tiling numbers

T(Ht,y(a, x))

Tc(Ht,y(a, x))3
.(5.2)

It is worth noticing that when a = x = 0, i.e., when all four triangular holes are all
vanished, the equation (5.1) becomes

T(Hex(n, n, n))

Tc(Hex(n, n, n))3
=

[(
1
3

)
n(

2
3

)
n

]2

,

which follows from the well-known enumerations of symmetry classes of plane partitions
(see, i.e., [85]). Here we use the Pochhammer symbol (x)n := x(x+1)(x+2) · · · (x+n−1).
In particular, the tiling number in the numerator is precisely the number of boxed plane
partitions; the tiling number in the denominator is the number of cyclically symmetric
plane partitions. Macdonald conjectured the following weighted enumeration of cyclically
symmetric plane partitions [73, Ex. 18, p. 85]:

(5.3)
∑
π

q|π| =
n∏
i=1

1− q3i−1

1− q3i−2

∏
1≤i<j≤n

1− q3(2i+j−1)

1− q3(2i+j−2)

∏
1≤i<j,k≤n

1− q3(i+j+k−1)

1− q3(i+j+k−2)
,

where the sum is over all cyclically symmetric plane partitions π that are contained in a
(n × n × n)-box. The unweighted version of the conjecture was proved by Andrews [2];
the full conjecture was proved by Mills, Robbins, and Rumsey [75].
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Figure 5.3. A cyclically symmetric tiling of the region with three bowties removed.

At this point, one would think about similar weighted versions of the tiling numbers in
(5.1). Unfortunately, there have been no such nice q-enumerations in general. However,
in the case when x = 0 (i.e., the central hole vanishes) and the three satellite holes are
attached to the hexagon’s boundary, we have a nice q-enumeration, as claimed in Theorem
2. We want to obtain a formula for the weighted sum of the cyclically symmetric tilings of

the region F

x x x
a a a
d d d

 (an F -type region in Theorem 2 must have a = b = c, d = e = f ,

x = y = z in order to have a cyclically symmetric tiling). See Figure 5.3 for an example
of such tiling. Equivalently, we are interested in finding the following volume generating
function:

Problem 21. Find the volume generating function of the cyclically symmetric stacks

fitting in the compound room B

x x x
a a a
d d d

.

Ciucu and Fischer [14, Theorems 2.3 and 2.4] proved and generalized two conjectures
of Ciucu and Krattenthaler [16, Conjectures A.1 and A.2] by enumerating the regions
Dx,y,z,m and D′x,y,z,m in Figure 5.4. These regions look essentially the same, and the only
difference is that the lozenges running along two zigzag cuts in D′x,y,z,m are weighted by
1/2 (see the lozenges with shaded cores). One can view these regions as one-third of an
F -type region in the previous problem. From the tiling formulas, we could realize that the
weighted enumeration of tilings of D′x,y,z,m is obtained from the tiling formula of Dx,y,z,m

by replacing x by x − 1/2. This property reminds us of the “combinatorial reciprocity
phenomenon”: even though the region Dx,y,z,m is not defined when x is a half-integer, its
tiling formula gives the number of combinatorial objects of a different sort (here are the
tilings of D′x,y,z,m) when evaluated at half-integers. We refer the reader to, e.g., [3, 78, 83]
for more discussions about the phenomenon.

Problem 22. Explain combinatorially the above
(

1
2

)
-phenomenon for the tiling numbers

of the region Dx,y,z,m and D′x,y,z,m.
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Figure 5.4. Two regions enumerated by Ciucu and Fischer: (a) D6,3,2,4

and (b) D′6,3,2,4. The lozenges with shaded cores are weighted by 1/2.

A similar thing happens in [62, Theorems 1.3 and 1.4]. In Theorem 1.3, we consider
the ratio of tiling generating functions of pairs of (dented) quartered hexagons Qx(a) and
Qy(a). They have the same dents on the right sides at the positions in a = (ai)

m
i=1; the

only difference is at their widths. We assign weights to lozenges of Qx(a) and Qy(a) as
in Figure 5.5(b): each vertical lozenges with label x is weight by (qx + q−x)/2, for x ≥ 1
(lozenges of other orientations are all weighted by 1). The pair of quartered hexagons
Q′x(a) and Q′y(a) in Theorem 1.4 are the same as that in Theorem 1.3; the only difference
is the weights of lozenges. Figure 5.5(c) illustrates the weight assignment of lozenges in
Q′x(a) and Q′y(a) (the lozenges with shaded cores on the left side are weighted by 1/2).
We have

T(Qx((ai)
m
i=1))

T(Qy((ai)mi=1))
= q2(y−x)(

∑m
i=1 ai−m2)

m∏
i=1

(q2(2y+ai+1); q2)2i−ai−1

(q2(2x+ai+1); q2)2i−ai−1

(5.4)

and

T(Q′x((ai)
m
i=1))

T(Q′y((ai)
m
i=1))

= q2(y−x)(
∑m
i=1 ai−m2)

m∏
i=1

(q2(2y+ai); q2)2i−ai−1

(q2(2x+ai); q2)2i−ai−1

.(5.5)

It is easy to see that
T(Q′x((ai)

m
i=1))

T(Q′y((ai)mi=1))
is obtained from

T(Qx((ai)
m
i=1))

T(Qy((ai)mi=1))
by replacing x by x− 1/2

and y by y−1/2. It would be interesting to find a direct explanation for this, i.e., we want
an explanation without requiring any calculation of the ratios tiling generating functions

Problem 23. Explain the
(

1
2

)
-phenomenon for the ratios of tiling generating functions

of the quartered hexagons Qx((ai)
m
i=1) and Q′x((ai)

m
i=1).

In their excellent paper about the tilling enumeration of hexagons with a maximal corner
cut off [16], Ciucu and Krattenthaler found an unusual pattern for the tiling number of
a triangular region denoted by T T n (see the shaded region in Figure 5.6 for T T 6). The
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Figure 5.5. (a) The quartered hexagon with dents on the right side. (b)
How to assign weights to lozenges in Q4(2, 4, 7, 10, 11, 12). (c) How to assign
weights to lozenges in Q′4(2, 4, 5, 10, 11, 12).

number of tilings of T T n factors as follows for n ≤ 7:

T(T T 1) = 2;

T(T T 2) = 32;

T(T T 3) = 22 · 13;

T(T T 4) = 22 · 52 · 31;

T(T T 5) = 2 · 32 · 192 · 37;

T(T T 6) = 2 · 73 · 13 · 43 · 127;

T(T T 7) = 27 · 35 · 53 · 7 · 13 · 73.

The amount of factorization is remarkable (the authors have computed and factored
T(T T n) up to n = 30) and comparable to that of the numbers enumerating domino tilings
of squares (given by the well-known formula of Kasteleyn [44] and Temperley and Fisher
[90]). Based on this observation, they posed the following problem.

Problem 24 (Problem 1.5 in [16]). Find a formula for the number of lozenge tilings of
T T n that explains a large amount of prime factorization of these numbers.
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Figure 5.6. The region T T 6.

In a recent paper [63], a common generalization for three famous families of regions
in the enumeration of tilings, namely the hexagons, the semi-hexagons, and the halved
hexagons, has been introduced. We consider a hexagon, then cut off a maximal k-staircase
whose each step has the width k. When k = 1, we have exactly the halved hexagon; when
k = 0, nothing is cut off, and the region is still the hexagon. When k ≥ 2, we have new
regions that are similar to the halved hexagons; however, the cut is tilted. We call the
new regions the k-halved hexagons or the tilted halved hexagons (see Figure 5.7).

We actually consider a more general situation when we allow some “dents” on the
staircase of the k-halved hexagon. Label the staircase levels from the bottom to the top
by 1, 2, . . . , l+h. We allow removing the up-pointing unit triangles at h corners. Assume
that the remaining steps have labels a1, a2, . . . , al as they appear from bottom to the top.
Denote by Hx,t,h(a1, a2, . . . , al) the resulting region (illustrated in Figure 5.8).

As there are nice q-enumerations of the quasi-regular hexagons, semi-hexagons, and
halved hexagons, we would expect a nice q-enumeration of the k-halved hexagons.

Problem 25. Find a q-enumeration of tilings of a k-halved hexagon.

In the enumeration of tilings, the symmetric regions often behave better than the
asymmetric ones. Many families of regions may not have a nice tiling number in the
general case. However, their tilings are enumerated by simple products in the symmetric
case. Let us revisit Ciucu–Krattenthaler’s S-cored hexagon, a hexagon with a cluster of
four triangles (called a “shamrock”) removed. The S-cored hexagons have a nice tiling
number in only two situations: (1) the “shamrock” is removed from the center [17], and
(2) the shamrock is removed from the boundary [57] (see Figure 5.9 for examples). In
general, if we remove the shamrock from a place that is different from the center or the
boundary, then the number of tilings is not given by a simple product formula. However,
in the case of reflectively symmetric hexagons, it has been shown [66] that we can remove
the shamrock at any position along the symmetry axis and still get a beautiful tiling
formula (see Figure 5.10(a)).

We have the same observation for hexagons with a family of vertically aligned triangular
holes of side-length 2. In the general case, we do not have a nice tiling number; however,
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Figure 5.7. The k-halved hexagons with no dent.

in the case of reflectively symmetric hexagons, Ciucu proved a simple product formula for
the tiling number [10]. See Figure 5.11(a) for an illustrated picture.

Our data suggests that if we place the shamrock holes and the family of triangular holes
1/2 unit off the symmetry axis, we still have nice tiling numbers in the above two families
of regions. See Figures 5.10(b) and 5.11(b). In general, we often have the following “off-
center phenomenon”: if we place the hole(s) not on the symmetry axis but 1/2 unit off
the symmetry axis, then the number of tilings seems to be as nice as the tiling number in
the symmetric case. This fact is not true anymore if we move the holes just 1 unit away
from the symmetric axis. It would be interesting to have a precise explanation for this
phenomenon.

Problem 26. Explain the off-center phenomenon.

It is worth noticing that the enumeration of tilings of regions with holes6 is especially
challenging. One of the difficulties is that the Lindström–Gessel–Viennot determinant
does not give the tiling number; it gives the signed tiling number instead. We prefer
the reader to, say, the proofs in Section 4 of [13] for a detailed explanation. In the
reflectively symmetric case, one can go around this obstacle by using a powerful tool,

6Several authors used the term “holey regions” for “regions with holes”.



28 TRI LAI

(d) k=0

x=3

l=4

x+h

t=4

h(k+
1)+

(1-l)k+
t

h(k+
1)+

(l-1)k+
t

h(k+
1)+

(l-1)k+
t

h(k+
1)+

(l-1)k+
t

t=3

x=3

x+h

l=3

l=3

x+h

x=3

t=2

t=7

x+h

x=3

l=3

(a) k=1

(b) k=2

(c) k=3

a1

a2

a3

a4

a1

a1

a1

a2

a2

a2

a3

a3

a3

Figure 5.8. Several k-halved hexagons with dents.

usually mentioned as Ciucu’s factorization theorem (see [9, Theorem 1.2]). This theorem
allows us to simplify the case of symmetric regions with holes to the case of simply
connected regions, say by dividing the region along the symmetric axis into two smaller
regions with no holes. See [10, Section 3] for more details of the method. However, if
we slide the holes 1/2 unit away from the symmetry axis, then Ciucu’s method is failed
to apply (as the new region is not symmetric anymore). It would be very interesting to
find explicit formulas for the numbers of tilings of the two regions in Figures 5.10(b) and
5.11(b).

Problem 27. Find a formula for the number of tilings of a symmetric hexagon with a
shamrock hole at 1/2 unit off the symmetric axis (as in Figure 5.10(b)).
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Figure 5.10. (a) Placing a shamrock hole on the symmetry axis of the
hexagon. (b) Placing a shamrock hole 1/2 unit off the symmetry axis of
the hexagon.

Problem 28. Find a formula for the number of tilings of a symmetric hexagon with a
family of aligned 2-triangles at 1/2 unit off the symmetric axis (as in Figure 5.11(b)).

The “Aztec pillow graphs” were first introduced in [77]. The width of an Aztec pillow
is always even. When the width of an Aztec pillow is 4k + 2, the upper half of the graph
has k+ 1 up-steps (k steps of size 3, and one step of size 1), followed by k+ 1 down-steps
of size 1 (as we go from the left to right), and the lower half is simply a 180◦-rotation of
the upper half. When the Aztec pillow’s width is 4k, the upper half has k up-steps of
size 3, followed by k down-steps of size 1. Denote by APn the Aztec pillow of width 2n.
See Figure 5.12 for the graphs APn, for n = 1, 2, . . . , 9. Forest Tong [92] conjectured the
following elegant divisibility of the matching numbers of the Aztec pillows.
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Figure 5.11. (a) Placing triangular holes of side-length 2 on the symmetry
axis of the hexagon. (b) Placing triangular holes 1/2 unit off the symmetry
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Figure 5.12. The Aztec pillows APn, for n = 1, 2, 3, . . . , 9 (reading from
left to right, top to bottom).

Problem 29. Prove that M(APm) | M(APn) whenever (m + 3) | (n + 3), where M(G)
denotes the number of perfect matching of graph G.

Tong has verified this conjecture computationally for m,n < 77.



PROBLEMS IN THE ENUMERATION OF TILINGS 31

It is worth noticing that the Aztec pillows’ definition has been generalized by Christo-
pher Hanusa. The original Aztec pillows above are the Aztec 3-pillows. Forest Tong also
observed that none of the 5-pillows, 7-pillows, and 9-pillows (as defined in [38]) seem to
share the above divisibility property.

Next, we investigate a nice property of the matching polynomial (see, e.g., [72, p.
xxxii,p. 333ff]).

Let G be a graph with no loops. Denote by mk(G) the number of (partial) matchings
of the graph G with exactly k edges, where m0(G) = 1 by convention. The matching
polynomial of G is defined to be

M(G) =
∑
k≥0

mk(G)xk.

A sequence (ai)i≥0 is a Pólya frequency sequence (PFS) if the infinite Toeplitz matrix
(Mi,j)i,j≥0 defined by Mi,j = aj−i (where ak = 0 if k < 0 by convention), i.e,

(Mi,j)i,j≥0 =



a0 a1 a2 a3 a4 · · ·
0 a0 a1 a2 a3 · · ·
0 0 a0 a1 a2 · · ·
0 0 0 a0 a1 · · ·
0 0 0 0 a0 · · ·
0 0 0 0 0 · · ·
...

...
...

...
...

. . .


,

has all nonnegative minors. By definition, a Pólya frequency sequence is log-concave,
as the log-concavity is equivalent to the fact that all 2 × 2 minors of (Mi,j)i,j≥0 are
nonnegative.

O. J. Heilmann and E. H. Lieb [39, Theorem 4.2] proved that the matching polynomial
M(G) has all real roots. This implies that the sequence (mk(G))k≥0 is a Pólya frequency
sequence (see, e.g., [5]). It would be interesting to find a combinatorial proof for this fact.

Problem 30. Prove combinatorially that the sequence of matching numbers (mk(G))k≥0

is a Pólya frequency sequence.

We note that Krattenthaler [49] provided a combinatorial proof for a special case of
Problem 30, namely the log-concavity of the sequence (mk(G))k≥0.

We can generalize Problem 30 to weighted graphs as follows. To each edge e of G, we
assign a weight xe. Then we define the weighted matching number mk(G,x) by

mk(G,x) =
∑
M

∏
e∈M

xe,

where the sum is taken over all k-element matchings M in G. Assume Pi = Pi(x) be a
polynomial in Z[x], for i = 1, 2, 3, . . . . We now define a sequence (Pi)

∞
i=1 to be an x-PFS

if all minors of the Toeplitz matrix (Pj−i)i,j≥0 (where Pk = 0 if n < 0) are polynomials in
the xe’s with nonnegative coefficients.

Problem 31. Prove combinatorially that the sequence of x-matching numbers (mk(G,x))k≥0

is an x-PFS.

Recently, P. Galashin and P. Pylyavskyy [33] consider a similar positivity for a planar
bipartite graph G = (V1, V2, E) embedded on a cylinder O. Let τ1 and τ2 be two perfect
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matchings on G. We always orient the edges in a perfect matching τ of G from a vertex
in V1 to a vertex in V2. Define the difference of two perfect matching τ1 − τ2 to be the
directed graph on O with vertices V1 ∪ V2 obtained by superimposing τ1 and τ2, and the
reversed the direction of edges in τ2. This way τ1−τ2 is always a disjoint union of directed
simple cycles, which can be viewed as singular 1-cycles on O. We define the relative height
of two perfect matchings h(τ1, τ2) to be the image of H1(O,Z) ' Z of the sum of these
cycles. Fix a minimal-height perfect matching τ0. Next, we can define the absolute height
of a perfect matching as h(τ) := h(τ, τ0).

We also assume that the edges of G are weighted by xe’s as above. We now define
Hi(x) to be the sum of weights of all perfect matchings with height i, where the weight
of a perfect matching is the product of its edge-weights as usual.

Problem 32 (Conjecture 6.1 in [33]). Prove that the sequence (Hi(x))i≥0 is an x-PFS.

We note that while the PFS properties in Problems 30 and 31 have been proved (and
we are asking for a combinatorial proof), the question about the PFS property in Problem
32 is still open. Several special cases of Problem 32 have been proved in [8].

We conclude this section with a problem of a rather different flavor. Let k be a fixed
positive integer. Denote by An = An,k the number of domino tilings of a k× n rectangle.
Form the generating function

Fk(x) =
∑
n≥0

Anx
n.

It has been shown that Fk(x) can be written as a rational function, say Fk(x) = Pk(x)
Qk(x)

with Pk and Qk polynomials with integer coefficients, and Qk(0) = 1 [48]. Stanley proves
that all the roots of Qk(x) are real and nonzero, and exactly half of the roots are positive
[84]. He also conjectures a special pattern for the roots of the polynomial:

Problem 33. Prove that Qk(x) has distinct roots.
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