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An invitation to positive geometries

Thomas Lam

Abstract. This short introduction to positive geometries, targeted at a mathematical audience, is

based on my talk at OPAC 2022.

Positive geometries are certain semialgebraic spaces, equipped with a distinguished meromorphic
form called the canonical form [ABL]. Examples of positive geometries include polytopes, positive parts
of toric varieties, totally nonnegative spaces, and Grassmann polytopes and amplituhedra.

Positive geometries were first introduced in theoretical physics. Canonical forms of positive geome-
tries are used to write formulae for scattering amplitudes, analytic functions that are used to compute
probabilities in particle scattering experiments. Roughly speaking, different positive geometries corre-
spond to different quantum field theories. There is a flourishing and well-developed industry expanding
the zoo of positive geometries and related physical processes. We refer the reader to the recent surveys
[FL, HT] for more on the physics of positive geometries, and to [EH, HP] for textbook introductions
to scattering amplitudes.

The mathematical study of positive geometries is still in its infancy. In this short note, we give a brief
introduction to positive geometries, with a mathematical audience, especially an algebraic or geometric
combinatorialist, in mind. The course webpage [CGA] contains many additional references for further
exploration.

We apologize for the multiple perspectives, especially those from physics, that we do not mention.
We thank the OPAC organizers, Christine Berkesch, Ben Brubaker, Gregg Musiker, Pavlo Pylyavskyy,
and Vic Reiner for the invitation to speak. We thank the National Science Foundation for support under
grant DMS-1953852.

1. The polytope canonical form

We begin by illustrating the main ideas with the example of convex projective polytopes. A projective
polytope is a subspace P ⊂ Pd(R) of projective space such that there exists a hyperplane H ⊂ Pd and
a linear identification Pd \ H ∼= Rd such that P ⊂ Pd \ H ∼= Rd is a Euclidean convex polytope. An
orientation of a projective polytope is an orientation of its interior Int(P ), which is always a manifold.
The following theorem is a reformulation of the statement that polytopes are positive geometries [ABL,
Section 6].

Theorem 1 (Residue definition). For each full-dimensional oriented projective polytope P ⊂ Pd there
exists a rational d-form Ω(P ) on Pd, with poles only along facet hyperplanes, and these poles are simple,
and such that Ω(P ) is uniquely determined by the recursive properties:

(1) the canonical form of a point pt = P0 is Ω(pt) = ±1 depending on the orientation,
(2) for any facet F ⊂ P , we have ResHΩ(P ) = Ω(F ), where H is the hyperplane spanned by the

facet F .

The differential form Ω(P ) is called the canonical form of P . The notation ResHΩ(P ) denotes a
residue, defined in (8); we illustrate the computation in some examples below.
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(a) A quadrilateral P . (b) Triangulation into T1, T2. (c) The adjoint line of P .

Figure 1. Our running example.

In the following examples, if P ⊂ Rd is a Euclidean polytope, then we consider it a projective polytope
via the natural inclusion Rd = {(1 : x) | x ∈ Rd} ⊂ Pd. Let P = [a, b] ⊂ R ⊂ P1(R) be a closed interval
with one of the two orientations. Then the canonical form is (up to a sign) given by

(1) Ω([a, b]) =
dx

x− a
− dx

x− b
,

which has residue +1 at x = a and −1 at x = b.

Example 1. Let P be the quadrilateral with vertices (0, 0), (2, 0), (0, 1), (1, 2) in R2 (Fig. 1(a)). Then

(2) Ω(P ) =
4 + 4x− y

xy(1 + x− y)(4− 2x− y)
dxdy.

As required, Ω(P ) has simple poles along each of the four facet hyperplanes

(3) x = 0, y = 0, 1 + x− y = 0, 4− 2x− y = 0

of P . The numerator will be explained in Theorem 5 below. Let us first take the residue along x = 0.
Since

Ω(P ) =
dx

x
∧ 4 + 4x− y

y(1 + x− y)(4− 2x− y)
dy,

we have, using (1),

Resx=0(Ω(P )) =
4− y

y(1− y)(4− y)
dy =

1

y(1− y)
dy =

1

y
dy − 1

y − 1
dy = Ω([0, 1]).

Now, let us take the residue along the hyperplane H = {f = 1+x− y = 0}. Since df/f = (dx− dy)/(1+
x− y), we can write

Ω(P ) =
df

f
∧ 4 + 4x− y

xy(4− 2x− y)
dx,

Making the substitution y = x+ 1, we get

ResH(Ω(P )) =

(
4 + 4x− y

xy(4− 2x− y)
dx

)
y 7→1+x

=
3 + 3x

x(x+ 1)(3− 3x)
dx =

1

x(1− x)
dx,

which again by (1) is the canonical form of the edge connecting the vertices (0, 1) and (1, 2). We invite
the reader to verify that the residues along the two other facets are correct.
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Note that changing the orientation of P negates the canonical form Ω(P ). Henceforth, we omit the
adjective “oriented” from our theorem statements, implicitly assuming that our polytopes have been
equipped with (compatible) orientations.

The uniqueness of Ω(P ) follows from the fact that Pd has no nonzero holomorphic d-forms. The
quickest proof of the existence of Ω(P ) is via triangulations ([ABL, Section 3]).

Theorem 2 (Additivity for subdivisions). Suppose that a projective polytope P is subdivided into
polytopes T1, T2, . . . , Tr. Then

Ω(P ) =

r∑
i=1

Ω(Tr).

Since every polytope has a triangulation, to construct canonical forms, it suffices to construct the
canonical form of a simplex. Let

∆d := {(X0 : X1 : · · · : Xd) ∈ Pd | Xi ≥ 0} ⊂ Pd

denote the standard projective d-simplex. Every face of ∆d is again a standard simplex, so it is easy to
verify that

Ω(∆d) =
dx1

x1
∧ · · · ∧ dxd

xd
, xi :=

Xi

X0

satisfies the recursion in Theorem 1.

Example 2. Let P be as in Example 1. Then P can be triangulated as in Fig. 1(b). The two
canonical forms are

(4) Ω(T1) =
2

xy(2− x− 2y)
dxdy, Ω(T2) =

9

(1 + x− y)(4− 2x− y)(2− x− 2y)
dxdy

which can be calculated by finding a projective transformation g ∈ PGL(3) ∼= Aut(P2) sending T1 (or T2)
to the standard simplex ∆2 and computing the pullback g∗(Ω(∆2)). More explicitly, suppose the triangle
T has facets ai + bix+ ciy = 0 for i = 1, 2, 3. Then letting g be the 3× 3 matrix with columns (ai, bi, ci),
we have

Ω(T ) = ± det(g)∏
i(ai + bix+ ciy)

.

It is easily verified that indeed Ω(T1) + Ω(T2) recovers Ω(P ) in (2), in agreement with Theorem 2.

We give an explicit formula for Ω(P ). For a subset S ⊂ Rd, the polar set S∨ is defined by

S∨ := {x ∈ Rd | x.y ≥ −1 for all y ∈ S}.
Theorem 3 (Dual volume [ABL, Section 7.4]). Suppose P ⊂ Rd ⊂ Pd is full-dimensional. Then

(5) Ω(P )(x) = Vol((P − x)∨)ddx.

where x ∈ Int(P ). Here, Vol denotes the Euclidean volume, normalized so that the unit simplex has
volume 1.

The function Vol((P − x)∨) is defined when x ∈ Int(P ). It analytically continues to a rational
function on Rd. While (5) depends on (compatible) choices of inner product and measure, we emphasize
that the definition (Theorem 1) does not depend on any metric notions.

Example 3. The polar polytope (P − x)∨ is illustrated in Fig. 2. The vertices of (P − x)∨ lie on the
rays of the (inner) normal fan of P . Intersecting (P − x)∨ with each maximal cone of the normal fan we
obtain a triangle. Summing the volumes of these triangles gives

1

xy
+

1

1 + x− y
+

3

(4− 2x− y)(x+ 1− y)
+

2

y(4− 2x− y)
=

4 + 4x− y

xy(1 + x− y)(4− 2x− y)
,

agreeing with Theorem 3.
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Figure 2. Left: the normal fan of P . Right: the polar polytope (P − (x, y))∨.

Remark 1. The rational function Vol((P −x)∨) is a special case of the dual mixed volume function.
Let P1, P2, . . . , Pr ⊂ Rd be Euclidean polytopes. The mixed volume is the polynomial

VP(x) := Vol(x1P1 + · · ·+ xrPr)

where P+Q denotes the Minkowski sum of polytopes P and Q. We define the dual mixed volume function
by

V ∨
P (x) := Vol((x1P1 + · · ·+ xrPr)

∨).

As before, this is defined when 0 ∈ Int(x1P1 + · · · + xrPr) and extended by analytic continuation. The
function V ∨(x) is a rational function. Choosing Pi = −ei and Pd+1 = P , and setting xd+1 = 1, one sees
that Vol((P − x)∨) is a special case of V ∨(x). See also [AHL21a] for an appearance of the dual mixed
volume function.

Define the d-form ⟨XddX⟩ on Rd+1,

⟨XddX⟩ := d!

d∑
i=0

(−1)iXidX0 ∧ · · · ∧ d̂Xi ∧ · · · ∧ dXd.

Under the tautological rational map τ : Rd+1 99K Pd, the pullback τ∗(Ω) of a rational d-form Ω on Pd can

be written as τ∗(Ω) = P (X)
Q(X) ⟨XddX⟩, where P (X)

Q(X) is a rational function, homogeneous of degree −d− 1.

For a cone C ⊂ Rd+1, define the dual cone C∨ by

C∨ = {x ∈ Rn+1 | x.y ≥ 0 for all y ∈ C}.

Theorem 4 (Laplace transform [ABL, Section 7.4]). Let P ⊂ Pd be a projective polytope, and let
C(P ) ⊂ Rd+1 be the (pointed, convex, polyhedral) cone over P . Then

τ∗Ω(P ) =
1

d!

(∫
C∨

e−X.Ydd+1Y

)
⟨XddX⟩

where C∨ ⊂ Rd+1 is the dual cone, and X,Y are vectors in Rd+1. Here, the integral converges when
X ∈ C(P ), and is extended by analytic continuation to Rd+1.

Example 4. Continuing Example 1, the cone C(P ) over P is given by

(6) C(P ) = Cone

10
0

 ,

12
0

 ,

11
2

 ,

10
1
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with dual cone

C∨ = Cone

a1 =

01
0

 ,a2 =

 1
1
−1

 ,a3 =

 4
−2
−1

 ,a4 =

00
1


whose generators correspond to the four facets (3). The cone C∨ can be triangulated C∨ = C1 ∪ C2 into
two simplicial cones C1 = Cone(a1,a2,a4) and C2 = Cone(a2,a3,a4), and we compute that

∫
C1

e−X.Ydd+1Y =
|det(a1,a2,a4)|

X1(X0 +X1 −X2)X2
=

1

X1(X0 +X1 −X2)X2∫
C2

e−X.Ydd+1Y =
|det(a2,a3,a4)|

(X0 +X1 −X2)(4X0 − 2X1 −X2)X2
=

6

(X0 +X1 −X2)(4X0 − 2X1 −X2)X2
.

(7)

Summing then specializing to (X0, X1, X2) = (1, x, y), we obtain (2), agreeing with Theorem 4.

We remark that the calculation of Example 4 comes from a triangulation of the dual cone (or dual
polytope) and is qualitatively quite different from the one in Theorem 3 (e.g., unlike (4), both rational
functions in (7) have poles belonging to the facets of P ). Indeed, the volume of a polytope P can
be obtained by triangulating P or by triangulating the dual of P , a phenomenon sometimes known as
Filliman duality [Fil].

Let P be a full-dimensional polytope in Pd with f facets. We define the adjoint hypersurface AP ⊂ Pd

as follows. Define HP to be the projective hyperplane arrangement consisting of all facet hyperplanes of
P . We say that HP is simple if through any point in Pd pass at most d hyperplanes of HP . The residual
arrangement RP consists of all linear subspaces that are intersections of hyperplanes in HP that do not
contain faces of P .

When HP is simple, Kohn and Ranestad [KR] proved that there is a unique hypersurface AP in Pd

of degree f − d− 1 which vanishes along the residual arrangement RP . In general (for P not necessarily
simple), we write P = limt→0 Pt for polytopes Pt such that HPt

is simple for t > 0, and define the
adjoint hypersurface AP := limt→0 APt

. In the following, we abuse notation by also using AP to denote a
polynomial whose vanishing set is the adjoint hypersurface. See [War] for a different definition of adjoint.

The following result connects the canonical form with adjoint hypersurfaces; see the learning seminar
notes of Gaetz [Gae].

Theorem 5 (Zeros equal adjoint hypersurface). Suppose P ⊂ Rd ⊂ Pd. Then

Ω(P ) = α · AP∏
facets H H

ddx

for some nonzero constant α.

Theorem 5 can be proved by triangulating P and using Theorem 3.
We remark that any rational form Pd has degree −d− 1 since ωPd ≃ OPd(−d− 1). Since all the poles

of Ω(P ) are linear, this agrees with the degree of AP being equal to f − d− 1.
If P is a simplex, then the adjoint hypersurface is empty, AP is a constant, and Ω(P ) has no zeroes.

Example 5. The rational 2-form (2) has four poles, which are the four facets of P . The numerator
vanishes along the line connecting (−1, 0) to (0, 4), the adjoint hypersurface of P . See Fig. 1(c).

Let π : X 99K Y be a rational map between complex algebraic varieties of the same dimension. In
the following, we shall use the notion of the pushforward π∗ω of a rational differential form ω on X; see
[ABL, (4.1)].

Theorem 6 (Pushforward [ABL, Section 7.3]). Suppose P has vertices W1,W2, . . . ,Wm ∈ Pd

viewed as vectors in Rd+1 in the following. Let V1 = (1,v1),V2 = (1,v2), . . . ,Vm = (1,vm) ∈ Zd+1 be
integer vectors with first coordinate equal to 1. Assume that Wi and Vi have the same oriented matroid,
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that is, sign det(Wi1 , . . . ,Wid+1
) = sign det(Vi1 , . . . ,Vd+1) ∈ {−1, 0, 1} for all {i1, . . . , id+1}. Define the

rational map Φ : Pd → Pd by

Φ : (1 : z) = (1 : z1 : · · · : zd) 7−→
m∑
i=1

zviWi ∈ Pd.

Then
Ω(P ) = Φ∗Ω(∆

d).

In Theorem 6, the rational map Φ has degree equal to the normalized volume of the polytope with
vertices V, and maps Int(∆d) homeomorphically to Int(P ). Theorem 6 also has an interpretation in
terms of toric varieties; see Section 3.3.

Example 6. Choose W1,W2,W3,W4 ∈ R3 to be the generators of C(P ) in (6). We will choose V
to be a unit square, with V1 = (1, 0, 0),V2 = (1, 1, 0),V3 = (1, 1, 1),V4 = (1, 0, 1), which clearly has the
same oriented matroid as W. The map Φ, restricted to R2 = {(z1, z2)} is given by

Φ(z1, z2) =

10
0

+ z1

12
0

+ z1z2

11
2

+ z2

10
1

 =

1 + z1 + z1z2 + z2
2z1 + z1z2
2z1z2 + z2

 ≈

 1
2z1+z1z2

1+z1+z1z2+z2
2z1z2+z2

1+z1+z1z2+z2

 .

Using a symbolic computation package, one computes that there are two solutions to

(x, y) = (
2z1 + z1z2

1 + z1 + z1z2 + z2
,

2z1z2 + z2
1 + z1 + z1z2 + z2

),

given by

(z
(1)
1 , z

(1)
2 ) = z(1) =

(√
2(x− 2)y + (x+ 2)2 + y2 − 3x− y + 2

2(2x+ y − 4)
,−
√
2(x− 2)y + (x+ 2)2 + y2 + x− 3y + 2

2(x− y + 1)

)

(z
(2)
1 , z

(2)
2 ) = z(2) =

(
−
√

2(x− 2)y + (x+ 2)2 + y2 + 3x+ y − 2

2(2x+ y − 4)
,

√
2(x− 2)y + (x+ 2)2 + y2 − x+ 3y − 2

2(x− y + 1)

)
The differential form Φ∗(

dz1dz2
z1z2

) is given by summing over the solutions z(1) and z(2). Explicitly, for
i = 1, 2, define the Jacobian

J (i)(x, y) = det

∂z
(i)
1

∂x
∂z

(i)
1

∂y

∂z
(i)
2

∂x
∂z

(i)
2

∂y

 .

Then

Φ∗

(
dz1dz2
z1z2

)
=

(
J (1)(x, y)

z
(1)
1 z

(1)
2

+
J (2)(x, y)

z
(2)
1 z

(2)
2

)
dxdy

which recovers (2). Note that neither term in the summation is a rational form!

2. Definition of positive geometry

Let X be complex d-dimensional irreducible algebraic variety, ω a meromorphic d-form on X, and
H ⊂ X an (irreducible) hypersurface on X. Assume that ω has at most simple poles on H. Then the
residue ResHω is the (d − 1)-form on H defined as follows. Let f be a local coordinate such that f
vanishes to order one on H. Write

ω =
df

f
∧ η + η′

for a (d− 1)-form η and a d-form η′, both without poles along H. Then the restriction

(8) ResHω := η|H
is a well-defined (d− 1)-form on H, not depending on the choices of f, η, η′.

Henceforth, we assume that X is a complex d-dimensional irreducible algebraic variety defined over
R. We equip the real points X(R) with the analytic topology. Let X≥0 ⊂ X(R) be a closed semialgebraic
subset such that the interior X>0 = Int(X≥0) is an oriented d-manifold, and the closure of X>0 recovers
X≥0. Let ∂X≥0 denote the boundary X≥0 \ X≥0 and let ∂X denote the Zariski closure of ∂X≥0. Let
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C1, C2, . . . , Cr be the irreducible components of ∂X. (We assume that X is generically smooth along
each Ci, but see Remark 3.) Let Ci,≥0 denote the closures of the interior of Ci ∩ X≥0 in Ci(R). The
spaces C1,≥0, C2,≥0, . . . , Cr,≥0 are called the boundary components, or facets of X≥0.

Definition 1. We call (X,X≥0) a positive geometry if there exists a unique nonzero rational d-form
Ω(X,X≥0), called the canonical form, satisfying the recursive axioms:

(1) If d = 0, then X = X≥0 = pt is a point and we define Ω(X,X≥0) = ±1 depending on the
orientation.

(2) If d > 0, then we require that Ω(X,X≥0) has poles only along the boundary components Ci,
these poles are simple, and for each i = 1, 2, . . . , r, we have

(9) ResCiΩ(X,X≥0) = Ω(Ci, Ci,≥0).

Remark 2. While orientations are suppressed in our notation and statements, we always insist that
the orientation on a boundary component Ci,>0 is induced by that of X>0.

We call (X,X≥0) normal if X is a normal variety and each boundary component (Ci, Ci,≥0) is a
normal positive geometry.

Remark 3. If X is not normal, one or more irreducible components C ⊂ ∂X may belong to the
singular locus of X. In this case, the definition of boundary component and residue should be modified
as follows. Let π : X̃ → X be the blowup of X along the codimension one subvariety C. Define
X̃≥0 = π−1(X>0 \ C) to be the closure of the preimage under π of the part of X>0 that does not belong
to C. Note that π is an isomorphism away from C, so π−1(X>0 \ C) and X>0 \ C are diffeomorphic
manifolds. We then define the boundary components of (X,X≥0) over C as before: let the irreducible

components of the Zariski-closure of (X̃≥0 \ Int(X̃≥0)) ∩ π−1(C) be C̃1, . . . , C̃r and let C̃i,≥0 denote the

closures of the interior of C̃i∩ X̃≥0 in C̃i(R). In Definition 1, we use (C̃i, C̃i,≥0) for i = 1, 2, . . . , r in place

of (C,C≥0) and in (9) we take the residue of π∗Ω(X,X≥0) along each C̃i.
For example, letX be a rational curve with a node p ∈ X(R), and let π : P1 → X be the normalization

where a, b ∈ P1(R) both map to p. Let X≥0 := π([a, b]) be the image of the closed interval from a to
b. Then ∂X≥0 = {p}. Then (X,X≥0) is a positive geometry with canonical form the 1-form on X that
pullsback to (1) on P1. This example appears as a boundary of the positive geometry in Fig. 4(a).

For brevity, we may refer toX≥0 as a positive geometry, and Ω(X≥0) its canonical form. For (X,X≥0)
to be a positive geometry, X cannot have nonzero holomorphic d-forms. Furthermore, if X does not have
nonzero holomorphic d-forms, then the uniqueness of the canonical form is immediate: the difference of
any two such forms would be holomorphic.

Any positive geometry (C,C≥0) encountered in the recursion Definition 1 is called a face of the
positive geometry X≥0.

For d = 1, we must have that X is a rational curve. If (X,X≥0) is normal, then we have X ∼= P1.
Any finite union of closed intervals in P1(R) is a positive geometry. For an interval [a, b] (in some affine
chart), the canonical form is given by (1). The canonical form of a disjoint union

⋃
i[ai, bi] of closed

intervals is the sum
∑

i Ω([ai, bi]).
Note that P1(R) is not a positive geometry. We have ∂P1(R) = ∅, but there is no 1-form on P1 with

no poles.
Disjoint unions of positive geometries in the same ambient projective algebraic variety are again

positive geometries.

3. Examples of positive geometries

It follows from Theorem 1 that polytopes are positive geometries.

3.1. Simplex-like positive geometries. With Theorem 5 in mind, we call a positive geometry
X≥0 simplex-like if Ω(X≥0) has no zeroes. Simplex-like positive geometries are particularly simple since
their canonical forms are almost defined without using the recursion of Definition 1. Namely, let Ω and
Ω′ be two rational forms, with simple poles along ∂X, and no other poles or zeroes. Then the ratio Ω/Ω′
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(a) Ω =
2

y(x2 + y2 − 1)
dxdy. (b) Ω =

6x + 2

(x− 2y + 1)(x− y)(x + y)(x + 2y + 1)
dxdy.

Figure 3. Some positive geometries in the plane that are not convex polygons. (a):
upper half unit disk. (b): nonconvex 4-gon.

is a regular function on the projective variety X, and therefore a constant. Thus the canonical form is
defined up to a scalar without any requirement on the residues.

If (X,X≥0) is a normal simplex-like positive geometry, then ∂X is an anticanonical divisor in X. See
[KLS14, Section 5] for related discussion.

It is also convenient to introduce a slight weakening of the simplex-like condition. We say that two
positive geometries (X,X≥0) and (Y, Y≥0) are birationally isomorphic if there is a birational isomorphism
f : X 99K Y , inducing a diffeomorphism X≥0

∼= Y≥0 which respects the face stratification. For example,
X could be a blow up of Y along a subvariety that does not intersect X≥0.

We say that (X,X≥0) is birationally simplex-like if it is birationally isomorphic to a simplex-like
positive geometry.

3.2. Dimension 2. Let us first consider normal positive geometries (X,X≥0) with X = P2. The
normality condition implies that each boundary component is a smooth rational curve, and thus either a
line or a conic. Indeed, let R ⊂ P2(R) be a region that that is bounded by a simple closed curve γ, which
is a union of finitely many pieces each of which is either a line segment or a part of a conic. Most such
regions R are positive geometries. For example, R could be a convex polygon, or a non-convex polygon,
or half of a disk; see Fig. 3.

On the other hand, let R be the closed unit disk. Then R is not a positive geometry, since the
boundary is a circle, the whole of P1(R), which is not a one-dimensional positive geometry.

The list grows if we allow (X,X≥0) to be non-normal. A large zoo of examples arise from the
theory of rational polypols in the work of Kohn, Piene, Ranestad, Rydell, Shapiro, Sinn, Sorea, and Telen
[KPRRSSST]. See Fig. 4 for some examples.

Unfortunately, a classification of positive geometries in arbitrary dimensions seems out of reach.

3.3. Toric varieties. Let XP be the normal, projective toric variety associated to a d-dimensional
lattice polytope P . Then it has a natural positive part XP,>0, defined to be the positive part Rd

>0 of the

torus T (R) ⊂ T that sits inside XP . We define the nonnegative part XP,≥0 := XP,>0.

Theorem 7 ([ABL]). (XP , XP,≥0) is a normal, simplex-like positive geometry.

The canonical form is the natural form Ω = dlogx1 ∧ · · · ∧ dlogxn on T , extended to a rational
top-form on XP .

While the combinatorics of faces for the two positive geometries, the polytope P , and the positive
toric variety XP,≥0 are identical, the algebraic geometry is quite different. In particular, the canonical
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(a) Ω =
1

x3 + x2 − y2
dxdy. (b) Ω =

x2 + xy + y2 + x

(x2 − y)(x2 − y3)
dxdy.

Figure 4. Some rational polypols. (a): boundary nodal cubic with equation y2 =
x2(x+ 1). (b): boundary curves y = x2 and y3 = x2.

form Ω(XP,≥0) has no zeroes while Ω(P ) typically has a very interesting zero set (Theorem 5). From this
perspective, toric varieties are simpler positive geometries than polytopes.

A morphism f : (X,X≥0) → (Y, Y≥0) of postive geometries is a rational map f : X 99K Y which
restricts to a diffeomorphism f |X>0

: X>0 → Y>0. In [ABL], we formulated the heuristic that canonical
forms should pushforward under morphisms of positive geometries. Theorem 6 is an example of this for
a morphism from a toric variety to a polytope. More precisely, the rational map Φ : Pd 99K Pd of in
Theorem 6 can be factored into the rational maps

α :Pd 99K Pm−1 (1 : z1 : · · · : zd) 7−→ (zv1 : · · · : zvm)

β :Pm−1 99K Pd (u1 : u2 : · · · : um) 7−→
m∑
i=1

uiWi.

The (closure of the) image of α is the toric variety XV associated to V. The linear map β is a morphism
of positive geometries from XV,≥0 to the polytope P . In the case that V = W, the map β is called the
algebraic moment map.

3.4. Totally nonnegative Grassmannian and flag varieties. Let G be a split real reductive
group and P ⊂ G a parabolic subgroup. Lusztig [Lus98] has defined the totally nonnegative part
(G/P )≥0 of the partial flag variety G/P . The following result was stated as an expectation in [ABL].

Theorem 8. (G/P, (G/P )≥0) is a normal, simplex-like positive geometry.

For completeness, we give a proof of Theorem 8 in Appendix A.
The face stratification of (G/P )≥0 is well studied; see [Rie99, Lus98]. We have a decomposition

G/P =
⊔

[v,w]P
Π̊w

v where the open projected Richardson varieties Π̊w
v [KLS14] are indexed by equivalence

classes of P -Bruhat intervals. Denote by Πw
v = Π̊w

v the (closed) projected Richardson variety. The faces
of (G/P )≥0 are the positive geometries (Πw

v , (Π
w
v )≥0), where (Πw

v )≥0 := Πw
v ∩ (G/P )≥0.

The case of the Grassmannian Gr(k, n) of k-planes in Cn is of particular importance in numerous
situations. Postnikov [Pos] gave an independent definition of the totally nonnegative part Gr(k, n)≥0, as
the subspace represented by k × n matrices all of whose k × k minors are nonnegative. For k = 1, we
have Gr(1, n)≥0 = Pn−1

≥0 is a n− 1 dimensional simplex.

Theorem 9. (Gr(k, n),Gr(k, n)≥0) is a normal, simplex-like positive geometry.
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The faces of (Gr(k, n),Gr(k, n)≥0) are positive geometries called positroid cells, and their Zariski
closures are called positroid varieties [Pos, KLS13, Lam16b].

Remark 4. Conjecturally, the space of planar Ising models [GP], also called the positive orthogonal
Grassmannian [HW], and the space of electrical networks [Lam18], also called the positive Lagrangian
Grassmannian [CGS, BGKT] are positive geometries.

We expect that other spaces appearing in total positivity, such as wonderful compactifications or
Kac-Moody flag varieties [BH, He], are positive geometries.

3.5. Moduli space. Let X = M0,n be the Deligne-Knudsen-Mumford compactification [DM] of
the moduli space of n points on P1. This is a smooth complex projective variety of dimension n − 3.
The open subset M0,n ⊂ X is the moduli-space of n distinct points on P1. It is isomorphic to a
hyperplane arrangement complement. The real part M0,n(R) is a (n− 3)-dimensional smooth manifold
with (n − 1)!/2 connected components. We define (M0,n)≥0 ⊂ X to be the closure in X of one of
these connected components. (The group Sn acts on X by permuting the n points, and this action acts
transitively on the connected components of M0,n(R).)

Theorem 10 ([AHL21b, Proposition 8.2]). (M0,n, (M0,n)≥0) is a positive geometry.

For a discussion of differential forms on M0,n, see for example [BCS].
The positive geometry (M0,n)≥0 is diffeomorphic to the associahedron polytope as a stratified space.

This example is not a simplex-like geometry. However, it is birationally simplex-like. Indeed, it is
birationally isomorphic to the toric variety (XP , XP,≥0) associated to the associahedron; see [AHL21a,
Section 10]. For closely related geometries, see the cluster configuration spaces of [AHL21b] and the
positive Chow cells of [ALS].

3.6. Cluster varieties. Let Y be a d-dimensional cluster variety, that is, the spectrum Y = Spec(A)
of a cluster algebra of geometric type. For cluster algebras, we follow the convention that frozen variables
are inverted [LS].

We will assume that Y is a reasonable cluster variety, for example, locally acyclic and of full rank
[Mul]. Then Y has a natural positive part Y>0, the positive part of any cluster torus in Y . Furthermore,
Y has a natural top form Ω(Y>0) :=

∏
i dxi/xi, defined up to sign, where (x1, . . . , xd) is a seed of the

cluster algebra.

Conjecture 1. Let Y be a cluster variety, locally acyclic and of full rank. Then there is a compact-
ification X of Y such that (X,X≥0) is a simplex-like positive geometry, where:

(1) X>0 = Y>0 and Y = X \ ∂X,
(2) Ω(X≥0) = Ω(Y>0),
(3) each face positive geometry (C,C≥0) of (X,X≥0) is also a compactification of a cluster variety

(and its positive part).

Theorem 9 is the prototypical example of this conjecture. Indeed, the stratification of the Grassman-
nian induced by positroid cells are the open positroid varieties, which are shown to be cluster varieties
in [GL19+].

3.7. Grassmann polytopes and amplituhedra. Let Z : Rn → Rk+m be a linear map and assume
that n ≥ k + m. Then generically, for a k-dimensional subspace V ⊂ Rn, we have that Z(V ) ⊂ Rk+m

is again k-dimensional. This induces a rational map Z : Gr(k, n) 99K Gr(k, k + m). Assuming that Z
is well-defined on Gr(k, n)≥0, the image P = Z(Gr(k, n)≥0) is a Grassmann polytope [Lam16b, Kar]1.
Viewing Z as a n× (k +m) matrix, we call Z positive when all the (k +m)× (k +m) minors of Z are
positive. In this case, An,k,m = Z(Gr(k, n)≥0) is known as the amplituhedron.

In the case k = 1, Grassmann polytopes are projective polytopes, and the amplituhedron is a cyclic
polytope. Thus the following conjecture holds for k = 1.

Conjecture 2 ([ABL]). Grassmann polytopes and amplituhedra are positive geometries.

1More general Grassmann polytopes are considered in [Lam16b].
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The (conjectural) canonical form of the amplituhedron An,k,m is very well-studied due to its relation
to super Yang-Mills amplitudes [AT14a]. Among the remarkable properties the amplituhedron canonical
form satisfies, let us mention the conjectural positivity [AHT] and the behavior under parity duality
[GL20].

Grassmann polytopes give a wealth of examples of positive geometries that are not simplex-like. Some
other (potential) examples are naive positive parts of flag varieties [BK, BHL], higher-loop amplituhedra
[ABL, AT14b], and momentum amplituhedra [DFLP]. These examples, as well as Conjecture 2, may
require extending the notion of positive geometry to allow for boundary components to be formal sums
of positive geometries; see the recent paper [DHS].

4. Combinatorics, topology, etc.

We pose a number of questions on various features positive geometries.

4.1. Positive topology. A positive geometry X≥0 is connected if X>0 is a connected manifold and
all boundary components (C,C≥0) are connected positive geometries. Note that this is stronger than
the condition that X>0 is connected as a topological space. For simplicity, we restrict our discussion to
connected positive geometries.

Problem 1. What can we say about the topology of X≥0 and X>0 for connected positive geometries?

Polytopes, positive parts of toric varieties, totally positive parts of flag varieties, and the positive
part of the moduli space of n points are all examples of connected positive geometries. In all these cases,

(1) X>0 is homeomorphic to an open ball, and X≥0 is homeomorphic to a closed ball of the same
dimension;

(2) the face poset of X≥0 is a Eulerian and shellable;
(3) the face stratification of X≥0 endows it with the structure of a regular CW-complex.

For polytopes, these statements are well-known. The toric variety case and the moduli space case
are both diffeomorphic to polytopes. For the totally positive flag varieties, see [GKL22, GKL19] for
(1), [Wil] for (2), and [GKL21] for (3). It would be interesting to establish (1),(2),(3) for connected
Grassmann polytopes. See also [BGPZ].

4.2. Complex topology. Let (X,X≥0) be a positive geometry, and let X̊ := X\∂X be the complex

algebraic “open stratum” of the positive geometry. For simplicity, we assume that X̊ is a smooth complex
algebraic variety.

Since Ω(P ) has poles only along ∂X, it is holomorphic on X̊. Furthermore, Ω(P ) is a holomorphic

top-form and thus closed. It therefore defines a class [Ω(P )] ∈ Hd(X̊) = Hd(X̊,C) in the deRham (and

therefore singular) cohomology of X̊.

Problem 2. What can we say about the topology of X̊ and what can we say about the class [Ω(P )] ∈
Hd(X̊)?

(a) For X≥0 = P a polytope, X̊ is a hyperplane arrangement complement.

(b) For X≥0 = XP,≥0 the positive part of a toric variety, X̊ is a complex algebraic torus.

(c) For X≥0 = (G/P )≥0 a totally nonnegative flag variety, X̊ is the top open projected Richardson
stratum.

The cohomology of hyperplane arrangement complements are well-understood from both geometric
and combinatorial perspectives [OT]. The cohomologies of open Richardson varieties were studied in
[GL20+]. In the case of an open positroid variety, or more generally a Grassmann polytope or am-

plituhedron, the space X̊ could be considered a Grassmannian variant of a hyperplane arrangement
complement. These cohomologies are especially interesting in the positroid case, where they are related
to q, t-Catalan numbers.

Curiously, in the simplex-like positive geometry discussed in Section 3, we have dimHd(X̊) = 1, and
the cohomology group is spanned by [Ω(P )].



12 THOMAS LAM

(a) For X≥0 = P a simplex, we have X̊ = (C∗)d which deformation retracts to a torus (S1)d, whose

cohomology is well-known. For Fig. 3(a), the formula Hd(X̊) = C · [Ω(P )] can be proven, for
example, using the Gysin long exact sequence.

(b) For the toric variety case, we again have X̊ = (C∗)d ≃ (S1)d.

(c) For X̊ an open projected Richardson variety, the dimension dim(Hd(X̊)) = 1 is given in [HLZ,

Proposition 8.6]. Let us show that [Ω(X≥0)] ̸= 0 inside Hd(X̊). In the notation of Appendix A,
for [v′, w′]P ⋖ [v, w]P , we have a Gysin exact sequence

· · · → Hd(Π̊[v,w]P ∪ Π̊[v′,w′]P ) → Hd(Π̊[v,w]P )
Res−→ Hd−1(Π̊[v′,w′]P ) → · · · .

By induction on dimension we may assume that [Ω((Π[v′,w′]P )≥0)] spans H
d−1(Π̊[v′,w′]P ); then

(⋆⋆) in Appendix A shows that [Ω((Π[v,w]P )≥0)] spans H
d−1(Π̊[v,w]P ).

The fact that Hd(X̊) is spanned by [Ω(P )] also suggests a relation to mirror symmetry [LT, HLZ].
See also [LS] for a discussion of the cluster variety case.

On the other hand, for a general polytope, or a positive geometry that is not simplex-like, Hd(X̊)
can be large.

4.3. Triangulations. In Section 1, we give many formulae for the canonical form of a polytope. A
fundamental problem in positive geometries is to give (similar or otherwise) formulae for canonical forms
of positive geometries.

A collection (X1, X1,≥0), (X2, X2,≥0), . . . , (Xr, Xr,≥0) of positive geometries is a subdivision of a pos-
itive geometry (X,X≥0) if the interiors Xi,>0 are pairwise disjoint and

⋃
i Xi,≥0 = X≥0. (This is weaker

than the usual notion of subdivion for polytopes.) Eq. (4) generalizes to positive geometries.

Theorem 11 ([ABL]). If (X1, X1,≥0), (X2, X2,≥0), . . . , (Xr, Xr,≥0) subdivides (X,X≥0) then Ω(X≥0) =∑
i Ω(Xi,≥0).

In the case of the amplituhedron, Theorem 11 is the main tool used to construct the canonical form
[AT14a, ATT]. This has led to much work on the triangulations of amplituhedra; see the recent works
[GL20, PSW, ELT] and references therein.

Conjecture 3. Every positive geometry has a subdivision into positive geometries that are bira-
tionally simplex-like.

A subdivision as in Conjecture 3 is called a triangulation. We believe the adjective “birationally” is
necessary because of the possibility of modifying X by a blowup.

4.4. Adjoint. Motivated by Theorem 5, we make the following definition. See [KPRRSSST] for
a detailed discussion.

Definition 2. The adjoint hypersurface AX≥0
of a positive geometry (X,X≥0) is the closure of the

zero locus of Ω(X≥0).

Up to a scalar, determining the adjoint hypersurface is equivalent to determining the canonical form
of a positive geometry. Let C1, C2, . . . , Cr be the irreducible components of ∂X. We produce a finite
list of closed irreducible subvarieties of X by repeatedly intersecting and taking irreducible components,
starting with C1, . . . , Cr. Define the residual arrangement RX≥0

to be the collection of such subvarieties
that do not intersect X≥0.

Proposition 1. Let (X,X≥0) be a positive geometry and assume that all the varieties in the face
stratification of X≥0 are smooth. Then the adjoint hypersurface AX≥0

of X≥0 contains RX≥0
.

Proof. Let C be a boundary component of (X,X≥0). We first show that AC≥0
is contained in

AX≥0
∩ C. Using the smoothness assumption, we let f1, f2, . . . , fd be local coordinates for X such that

C is cut out by f1 = 0 to order one. Locally, df1 ∧ df2 ∧ · · · ∧ dfd is a non-vanishing top form, so we have

Ω(X≥0) =
AX≥0

f1p2p3 · · · pm
df1 ∧ df2 ∧ · · · ∧ dfd,
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where p2, p3, . . . are regular functions whose vanishing sets are the other boundary components of X, and
AX≥0

here denotes a regular function that vanishes along the adjoint hypersurface. Then

(10) ΩC≥0
= ResCΩ(X≥0) =

(
AX≥0

p2p3 · · · pm

) ∣∣∣∣
C

df2 ∧ · · · ∧ dfd.

The restriction to C is obtained by setting f1 = 0. After cancelling out common factors in the numerator
and denominator, we deduce that the adjoint hypersurface AC≥0

is contained in AX≥0
∩ C.

Now let Z ⊂ RX≥0
be an irreducible component and let C be a boundary component of X that

contains Z. Let D1, D2, . . . , Dr be the irreducible components of Ci ∩ Cj for two boundary components
of (X,X≥0). Since X is smooth, all these subvarieties are codimension two [Stacks, Tag 0AZL]. Reindex
so that D1, D2, . . . , Dp are the boundary components of (C,C≥0). Suppose first that Z belongs to one of
the subvarieties Dp+1, . . . , Dr. Since Z ⊂ C, we may assume that Z ⊂ D ⊂ C where D is an irreducible
component of C ∩ C ′ for C ′ some other boundary component of (X,X≥0). But D is not an irreducible
component of ∂C, so Ω(C≥0) does not have a pole along D. On the other hand, Ω(X≥0) has a pole along
C ′. From (10), we see that this is only possible if AX≥0

vanishes along D.
Next, suppose that Z does not belong to any of Dp+1, . . . , Dr. Then Z can be obtained by repeatedly

intersecting and taking irreducible components of the subvarieties D1, D2, . . . , Dp. On the other hand,
Z ∩ X≥0 = ∅ which implies that Z ∩ C≥0 = ∅, so by definition we have Z ⊂ RC≥0

. By induction on
dimension, we conclude that Z ⊂ AC≥0

, and since AC≥0
⊂ AX≥0

∩ C ⊂ AX≥0
, the result follows. □

We expect Proposition 1 to hold without any smoothness assumption.

Problem 3. When is AX≥0
characterized by the property of containing RX≥0

?

In the case that X≥0 is one-dimensional, Problem 3 has an affirmative answer only when X≥0 is a
closed interval. When X≥0 is a disjoint union of multiple intervals, the canonical form has a non-trivial
zero set, but the residual arrangement is empty.

Note that even in the case of polytopes, the adjoint hypersurface is not always uniquely determined
by its vanishing on the residual arrangement [KR].

It would be especially interesting to study the residual arrangement of the amplituhedron.

4.5. Positive convexity and dual positive geometries. A positive geometry (X,X≥0) is called
positively convex [ABL] if Ω(X,X≥0) has constant sign on X>0. In other words, the poles and zeros of
Ω(X,X≥0) do not intersect X>0. For a polytope P , the dual volume formula (Theorem 3) shows that the
canonical form Ω(P ) takes constant sign in the interior of the polytope. Thus polytopes are positively
convex positive geometries. Fig. 3(a) and Fig. 4(a,b) are positively convex geometries. Fig. 3(b) is not
positively convex. It is conjectured in [ABL, AHT] that certain amplituhedra are positively convex
geometries.

As suggested by Theorem 3, positive convexity indicates the potential existence of a dual positive
geometry.

4.6. Integral functions. Let us say only a brief word about the relation between positive geometries
and scattering amplitudes which typically arises from taking integrals of the canonical form over positive
geometries. One typically considers integrals of the form

(11)

∫
X>0

(regulator)Ω(X≥0)

Since Ω(X≥0) has poles along ∂X≥0, some regulator in the integrand is necessary for the integral to
converge. Different regulators appear in different applications.

The motivating examples of (11) are integrals for scattering amplitudes in physics. We refer the
reader to [HT, FL] for further discussion.

Let us mention two classes of examples that recover classical special functions. The stringy canonical
forms of [AHL21a] are obtained by taking the regulator to be a monomial fs1

1 · · · fsr
r in a collection

of rational functions f1, f2, . . . , fr, and viewing the integral as a function of the exponents s1, s2, . . . , sr.
Stringy canonical forms are so named because in the case X≥0 = (M0,n)≥0 one obtains string theory
amplitudes. For n = 4, one recovers the beta function, studied clasically by Euler and Legendre, as a

https://stacks.math.columbia.edu/tag/0AZL
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special case. Curiously, these integrals also appear as marginal likelihood integrals in algebraic statistics
[ST].

Another class of examples appear in mirror symmetry and the theory of geometric crystals [Rie12,
Lam16a, LT]. In this case, one takes the regulator to be exp(f) for a rational function f called the
superpotential. When (X,X≥0) = (P1,∆1), this integral recovers the Bessel function, studied classically
by Bernoulli, Bessel, and others.

Appendix A. Proof of Theorem 8

Write [v′, w′]P ≤ [v, w]P for the partial order on projected Richardson varieties, and let [v′, w′]P ⋖
[v, w]P denote a cover relation. Thus (Πw′

v′ )≥0 ⊆ (Πw
v )≥0 for [v′, w′]P ≤ [v, w]P . We generally follow the

notations of [KLS14, GKL21].
The projected Richardson variety Πw

v is irreducible, normal, and of dimension ℓ(w)− ℓ(v) [KLS14].
Write ∂Πw

v for the union of all projected Richardson varieties contained in Πw
v but of smaller dimension.

The irreducible components of ∂Πw
v are called the facets of Πw

v . In [KLS14, Section 5], it is shown that
∂Πw

v is an anticanonical divisor in Πw
v . It follows that there is a rational top-form ωw

v , unique up to

scalar, that is holomorphic and nonzero on Π̊w
v , with simple poles along the facets of Πw

v . Furthermore,
for [v′, w′]⋖ [v, w], we have

(12) ResΠw′
v′
ωw
v = ωw′

v′ up to scalar.

To prove Theorem 8, we define a top-form Ωw
v that is a scalar multiple of ωw

v and that satisfies the

defining recursion for the canonical form of (Πw
v , (Π

w
v )≥0). Each Π̊w

v is isomorphic to an open Richardson
variety in the full flag variety G/B, and it is enough to consider the G/B case. Then the strata are
indexed by intervals [v, w], v ≤ w in Bruhat order.

By [GKL21], (G/B)≥0 is a stratified closed ball. We may pick an orientation on the closed ball
(G/B)≥0 that is compatible with orientations on each of the strata. Thus it is enough to define Ωw

v up
to sign: the sign can be fixed by requiring that Ωw

v induces the chosen orientation.
Let v ≤ w and w be a reduced word for w. Let v be the positive distinguished subexpression of w,

that is, v is the rightmost subword of w that is a reduced word for v. Let J ⊂ [1, ℓ(w)] denote the indices
not belonging to the subword v. For t ∈ (C∗)|J|, we have a group element (see [GKL21] for notation)

(13) gv,w(t) = g1g2 · · · gn ∈ G

where gk = ṡik or gk = yik(tk) depending on whether k /∈ J or k ∈ J . The map t 7→ gv,w(t)B ∈ G/B
defines a rational parametrization of Πw

v . Define the rational form

Ωw
v = ±

∧
k∈J

dtk
tk

on Πw
v . It is not immediately clear that Ωw

v is holomorphic on Π̊w
v . By [Rie12, Proof of Proposition 7.2]

and [GKL21, Proof of Proposition 5.4], up to sign the form Ωw
v does not depend on the choice of w.

We shall show that

Ωw
v is equal to ωw

v up to a scalar.(⋆)

ResΠw′
v′
Ωw

v = ±Ωw′

v′ for [v′, w′]⋖ [v, w](⋆⋆)

which together proves Theorem 8.
By [Lam16a, Proposition 2.11], (⋆) holds for (v, w) = (e, w0). Now let (v, w) = (e, w). Then we can

choose w0 = w1w2 where w2 is a reduced word for w. Then ge,w0(t) = g1(t1, . . . , tr)g2(tr+1, . . . , tℓ) for
ℓ = ℓ(w0) and r = ℓ(w0) − ℓ(w), and g2 = ge,w parametrizes Πw

e . Thus Ωw
1 is obtained from Ωw0

1 by
repeatedly taking residues Restk=0 ◦ · · · ◦ Rest2=0 ◦ Rest1=0. By (12), this proves (⋆) for the v = e case.
Similarly, when (v, w) = (v, w0), we pick w0 = w1w2 where w2 is a reduced word for v. A calculation
shows that in the parametrization given by the group element (13), limtk→∞ sends yik(tk) to ṡik . Then
Ωw0

v is obtained from Ωw0
e by repeatedly taking residues · · · ◦ Restℓ−1=∞ ◦ Restℓ=∞. By (12), this proves

(⋆) for the w = w0 case.
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Next, suppose that we have [v′, w′] ⋖ [v, w] where v, w are arbitrary. Then either (a) w′ = w or (b)
v′ = v. Suppose we are in case (a). If w′ = w = w0, we may pick w0 = w1w2 where w2 is a reduced
word for v′. Then (⋆⋆) follows as before. Otherwise if w ̸= w0, we let w0 = uw and left multiply the
parametrization gv,w(t) by yi1(a1) · · · yir (ar) where u = si1 · · · sir is reduced, obtaining a parametrization
gv,w0 , and similarly for gv′,w0 . Using the definition of residue, we have∧

i

dai
ai

∧ Ωw
v′ = ±Ωw0

v′ = ±ResΠw0
v′
Ωw0

v = ±ResΠw0
v′

(∧
i

dai
ai

∧ Ωw
v

)
= ±

∧
i

dai
ai

∧ ResΠw
v′Ω

w
v .

Wedging with
∧

i
dai

ai
is injective for forms on Π̊w

v′ , so we deduce that (⋆⋆) holds in case (a). By (12),

this implies that (⋆) holds for [v′, w] if it holds for [v, w]. Since we have shown (⋆) for (v, w) = (e, w), we
deduce that (⋆) holds for all [v, w].

There is an automorphism ϕ : G/B → G/B that takes Π̊w
v to Π̊vw0

ww0
for each [v, w]; see [Lus21]. Since

Ωw
v satisfies (⋆), we have that ϕ∗(Ωw

v ) is a scalar multiple of Ωvw0
ww0

. This scalar multiple must be ±1,
since both ϕ∗(Ωw

v ) and Ωvw0
ww0

have unit residues on some 0-dimensional strataum Πu
u. Thus the validity

of (⋆⋆) for case (b) follows from that for case (a). We are done.
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