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1. Introduction

The study of face numbers of simplicial complexes using Stanley–Reisner rings is
one of major research topics in algebraic combinatorics. The starting point of this
research is Stanley’s Upper Bound Theorem (UBT for short) for spheres, which gives
sharp upper bounds of face numbers of triangulated spheres for a given number of
vertices. Since then, the idea of Stanley–Reisner rings has been applied to obtain a
number of interesting results on face numbers including a complete characterization
of face numbers (g-theorem) for simplicial polytopes [BL, St80] and triangulated
spheres [Adi].

One interesting research topic on this subject is to extend results on face numbers
of triangulations of spheres, such as the UBT and the g-theorem, to more general
(closed) manifolds. One possible extension of the UBT would be to find an upper
bound which holds for triangulations of all manifolds. See [No] for results on this
direction. The other possible extension of the UBT is to find a sharp upper bound
of face numbers of triangulations for each fixed manifold, but, while the UBT for
spheres is a basic result in algebraic combinatorics, we seem to miss a good method
to obtain such a result for manifolds which are not spheres. The aim of this article
is to pose a problem which hopefully initiate to study such upper bounds.

We first formulate a problem. We say that a simplicial complex ∆ is a trian-
gulation of a topological space X if its geometric realization |∆| is homeomor-
phic to X. Let fi(∆) be the number of the i-dimensional faces of ∆. The vector
f(∆) = (f−1(∆), f0(∆), . . . , fd(∆)), where d is the dimension of ∆ and f−1(∆) = 1,
is called the f-vector of ∆. We are interested in the following combinatorial invari-
ant of a topological manifold M :

fmax
i (M,n) = max{fi(∆) | ∆ is an n vertex triangulation of M},

where n is assumed to be larger than or equal to fmin
0 (M) the minimal number of

vertices which is required to triangulate M . The UBT for spheres can be considered
as a result determining fmax

i (Sd−1, n). Indeed, it tells that fmax
i (Sd−1, n) equals to

the fi of a cyclic d-polytope with n vertices. Using this notation, our question can
be stated as follows:

Question 1.1. Can we determine fmax
i (M,n) for all i and n ≥ fmin

0 (M) for (some
classes of) closed manifolds M?

It is probably not tractable to get a complete answer to the above question for
arbitrary manifold. Indeed, to get a complete answer, we need to know the number
fmin
0 (M) but in general it is a very difficult problem to determine this number (see
[Lu]). On the other hand, it is still an interesting problem to study the above

1



2 SATOSHI MURAI

question for particular classes of manifolds, and probably the first case which we
should understand is the case when M is a sphere bundle over the circle.
One reason to consider sphere bundles over the circle is that we have enough good

information on lower bounds of f -vectors of their triangulations. There are only two
topological types of Sk-bundles over S1. One of them is the product Sk ×S1 and the
other one is a non-orientable Sk-bundle Sk×S1, called a generalized Klein bottle (see
[Ste]). Every triangulation of an Sd−2-bundle over S1 has at least 2d + 1 vertices
[BK], and there is only one 2d + 1 vertex triangulation whose topological type is
Sd−2 × S1 when d is odd and Sd−2×S1 when d is even [BD, CSS]. Moreover, it is
known that stacked triangulations gave a sharp lower bound of f -vectors of their
triangulations for a fixed number of the vertices [BD, Theorem 3.12]. Considering
these known results, our problem can be formulated as follows.

Problem 1.2. Determine fmax
i (Sk × S1, n) and fmax

i (Sk×S1, n) for all i and n ≥
2d+ 2.

Here are some partial known results. There is a generalization of the UBT given
by Novik [No] which guarantees that fmax

i (Sd−2 × S1, n) and fmax
i (Sd−2×S1, n) are

bounded above by the f -vector of a cyclic d-polytope with n vertices, but this bound
is not sharp. Also, Chestnut, Sapir and Swartz [CSS, Theorem 4.1] gave a complete
characterization of all possible pairs (f0, f1) for each Sd−2 × S1 and Sd−2×S1, which
gives an answer to Problem 1.2 for i = 1. However, even a reasonable conjecture
for precise values of fmax

i (Sd−2 × S1, n) and fmax
i (Sd−2×S1, n) are not known when

i ≥ 2.
In this note, we present some recent algebraic results which might help to solve

this upper bound problem for manifolds, and, for sphere bundles over the circle, we
present in Problem 3.3 conjectural upper bounds of face numbers of triangulations
of these manifolds which is expected to be close to an actual values of fmax

i .
This note is organized as follows. In section 2, we recall the UBT for spheres

and its connection to Stanley–Reisner ring theory. In section 3, we pose our main
conjectural upper bounds. This bounds use h′′-vectors and g̃-vectors, which appear
in recent studies of face numbers of triangulated manifolds, and we explain algebraic
meanings of these vectors in section 4. In section 5, we present an example of a
triangulation of S5×S1 whose face vector attains our conjectural upper bounds. In
section 6, we discuss some more problems relating to the contents of this article.

2. Background: The UBT and Stanley–Reisner rings

Before discussing face numbers of manifolds, we recall the classical UBT for
spheres and its connection to Stanley–Reisner rings. An algebraic idea to prove
the UBT will be used to formulate our conjectural upper bounds of face numbers of
triangulations of sphere bundles over the circle. We refer the readers to [Sta96, St14]
for a history and a background on the UBT.

The Upper Bound Theorem. We first define necessary notation. Let ∆ be a
finite abstract simplicial complex. An element F of ∆ is called a face of ∆, and the
dimension of a face F is #F − 1, where #W denotes the cardinality of a finite set
W . The dimension of a simplicial complex ∆ is the maximum of the dimension
of its faces. Recall that f(∆) = (f−1(∆), . . . , fd−1(∆)) is the f -vector of a (d − 1)-
dimensional simplicial complex ∆. We write C(n, d) for the boundary complex of a
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cyclic d-polytope with n vertices (that is, the convex hull of n distinct points on the
moment curve {(t, t2, . . . , td) ∈ Rd | t ∈ R}). Below is the UBT for spheres.

Theorem 2.1 (UBT for spheres). If ∆ is an n vertex triangulation of the (d− 1)-
dimensional sphere Sd−1, then fi(∆) ≤ fi(C(n, d)) for all i = 0, 1, . . . , d− 1.

While we write the UBT in terms of f -vectors to see that it determines fmax
i (Sd, n)

(indeed it tells fmax
i (Sd−1, n) = fi(C(n, d))), it is more convenient to state the UBT

using another vectors known as h- and g-vectors. The h-vector of a (d − 1)-
dimensional simplicial complex ∆ is the vector h(∆) = (h0(∆), h1(∆), . . . , hd(∆))

defined by hi(∆) =
∑i

k=0(−1)i−k
(
d−k
d−i

)
fk−1(∆). Also, if ∆ is a triangulation of

Sd−1, then its g-vector is the vector g(∆) = (g0(∆), g1(∆), . . . , g⌊ d
2
⌋(∆)) defined by

gi(∆) = hi(∆) − hi−1(∆) for i = 0, 1, . . . , ⌊d
2
⌋, where h−1(∆) = 0. Below are some

remarks on h- and g-vectors.

• We have fi−1 =
∑i

k=0

(
d−k
d−i

)
hk(∆). In particular, knowing f(∆) is equivalent

to knowing h(∆) (if we know the dimension of ∆).
• Suppose that ∆ is a triangulation of the (d − 1)-sphere Sd−1. Then h(∆)
is non-negative, unimodal and symmetric. In particular, the symmetry tells
that knowing h(∆) is equivalent to knowing g(∆).

• Bounds for h-vectors induces bounds for f -vectors. Also, bounds for g-
vectors induces bounds for h-vectors.

It is known that the h-vectors of cyclic polytopes are given by hk(C(n, d)) =(
n−d+k−1

k

)
for k ≤ d

2
. The UBT is actually proved by proving the following statement.

Theorem 2.2 (UBT, h-version). If ∆ is an n vertex triangulation of the (d − 1)-
dimensional sphere Sd−1, then

hk(∆) ≤
(
n−d+k−1

k

)
for k ≤ d

2
.

Also, the following g-vector version of the statement also holds.

Theorem 2.3 (UBT, g-version). If ∆ is an n vertex triangulation of the (d − 1)-
dimensional sphere Sd−1, then

gk(∆) ≤
(
n−d+k−2

k

)
for k ≤ d

2
.

We note that the g-version implies the h-version, and the h-version implies the
f -version of the UBT.

Algebraic meanings of the h- and g-version. We explain algebraic meanings
of h- and g-version of the UBT using Stanley–Reisner rings. Let ∆ be a simplicial
complex with the vertex set [n] = {1, 2, . . . , n} and S = F[x1, . . . , xn] the polynomial
ring over an infinite field F. The ideal I∆ = (xF | F ̸∈ ∆), where xF =

∏
i∈F xi, is

called the Stanley–Reisner ideal and the ring F[∆] = S/I∆ is called the Stanley–
Reisner ring. It is known that for any (d− 1)-dimensional simplicial complex ∆,
there is a sequence of linear forms Θ = θ1, . . . , θd ∈ S such that F[∆]/(ΘF[∆]) is
Artinian. Such a sequence Θ is called a linear system of parameters (l.s.o.p. for
short) for F[∆]. For a homogenous ideal I, the formal power series Hilb(S/I, t) =∑

k≥0 dimF(S/I)kt
k is called theHilbert series of S/I, whereMk denotes the degree

k homogeneous component of a graded S-module M .
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Now, assume that ∆ is a triangulation of Sd−1. It is known that F[∆] is Cohen–
Macaulay, which means that for any (equivalently, some) l.s.o.p. Θ for F[∆] one
has

Hilb
(
F[∆]/(ΘF[∆]), t

)
=
∑d

k=0 hk(∆)tk.(1)

Also, since F[∆]/(ΘF[∆]) ∼= S/(I∆ + (Θ)), we have the inequality

dimF
(
F[∆]/(ΘF[∆])

)
k
≤ dimF(S/(θ1, . . . , θd))k = dimF(F[x1, . . . , xn−d])k.(2)

Considering (1), one can see that the inequality (2) for k = 0, 1, . . . , d is nothing but
the h-version of the UBT (Theorem 2.2) since dimF(F[x1, . . . , xn−d])k =

(
n−d+k−1

k

)
.

Similarly, the g-version has the following algebraic meaning. An algebraic g-
theorem for spheres [Adi] (a shorter proof in characteristic 2 can be found in [APP,
PP]) tells that, if ∆ is a triangulation of Sd−1 and if Θ = θ1, . . . , θd+1 ∈ S1 is
sufficiently general, then θ1, . . . , θd is an l.s.o.p. for F[∆] and the multiplication

×θd+1 :
(
F[∆]/(θ1, . . . , θd)F[∆]

)
k−1

→
(
F[∆]/(θ1, . . . , θd)F[∆]

)
k

is injective for k ≤ d+1
2

and is surjective for k ≥ d+1
2
, which in particular tells

Hilb
(
F[∆]/(ΘF[∆]), t

)
=
∑⌊ d

2
⌋

k=0 gk(∆)tk.(3)

Then the inequality

dimF
(
F[∆]/(ΘF[∆])

)
k
≤dimF(S/(θ1, . . . , θd+1))k=dimF(F[x1, . . . , xn−d−1])k(4)

coincides with the g-version of the UBT (Theorem 2.3)1.

3. Main problem

Now we present the main problem in this article. Recall that the g-version of the
UBT can be expressed as follows.

Theorem 3.1 (UBT, g-version). If ∆ is an n vertex triangulation of the (d − 1)-
dimensional sphere Sd−1 and R = F[x1, . . . , xn−d−1], then

gk(∆) ≤ dimFRk for k ≤ d
2
.

Our formulation of the problem is based on this algebraic expression of the UBT.
To state the problem, we need h′′- and g̃-vectors, which are considered to be

manifold versions of h- and g-vectors. To simplify the argument, we assume that F
has characteristic 2 in the rest of this note2. For a simplicial complex ∆, we write

H̃i(∆;F) for the ith reduced homology group of ∆ with coefficients in F and βi(∆) =

dimF H̃i(∆;F). For a (d−1)-dimensional simplicial complex ∆, we define the vectors
h′(∆) = (h′

0(∆), h′
1(∆), . . . , h′

d(∆)) and h′′(∆) = (h′
0(∆), h′

1(∆), . . . , h′
d(∆)) by

h′
i(∆) = hi(∆)−

(
d

i

)( i−1∑
k=1

(−1)i−kβk−1(∆)

)
1The algebraic g-theorem is not necessary to prove Theorem 2.3 since in the equality (3) the

left-hand side is larger than or equal to the right-hand side even without the algebraic g-theorem,
but (3) clarifies an algebraic meaning of g-vectors.

2This is assumed to ignore an orientability issue.
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and

h′′
i (∆) =

{
h′
i(∆)−

(
d
i

)
βi−1(∆), (i ̸= d),

h′
d(∆), (i = d).

When ∆ is a triangulation of a connected closed (d−1)-manifold, we also define the
vector g̃(∆) = (g̃0(∆), g̃1(∆), . . . , g̃⌊ d

2
⌋(∆)) by

g̃i(∆) = hi(∆)− hi−1(∆)−
(
d+ 1

i

)( i∑
k=1

(−1)i−kβk−1(∆)

)

= h′
i(∆)− h′′

i−1(∆)−
(
d+ 1

i

)
βi−1(∆).

Similar to h-vectors and g-vectors, the above vectors have nice algebraic meanings
in terms of Stanley–Reisner rings, and g̃-vectors of triangulated closed manifolds are
considered to play a role of g-vectors of triangulated spheres. Indeed, the following
generalization of Theorem 3.1 is known.

Theorem 3.2. Let d ≥ 4, ∆ an n vertex triangulation of a connected closed (d −
1)-manifold, and R = F[x1, . . . , xn−d−1]. Then there is an ideal I ⊂ R having(
d+1
2

)
β1(∆) generators of degree 2 such that

g̃k(∆) ≤ dimF(R/I)k for k ≤ d
2
.

We will explain meanings of h′-, h′′- and g̃-vectors as well as a more general
statement which proves Theorem 3.2 in the next section.

Inspired from Theorem 3.2, we pose the following more explicit conjectural upper
bounds for triangulations of sphere bundles over the circle.

Problem 3.3. Let d ≥ 4, n ≥ 2d + 1 and R = F[x1, . . . , xn−d−1]. Is it true that if
∆ is an n vertex triangulation of an Sd−2-bundle over S1, then

g̃k(∆) ≤ dimF(R/(x1, . . . , xd)
2)k for k ≤ d

2
?

So the problem asks if we can take I in Theorem 3.2 as the ideal (x1, . . . , xd)
2.

At this moment, it is not so clear if the Hilbert series of R/(x1, . . . , xd)
2 is really a

right choice for the maximum of the g̃-vectors in Problem 3.3. This choice is based
on the following result in [Mu].

Theorem 3.4. Let d ≥ 4, n ≥ 2d + 1 and R = R[x1, . . . , xn−d−1]. There is a
triangulation of an Sd−2-bundle over S1 such that

g̃k(∆) = dimF(R/(x1, . . . , xd)
2)k for k = 0, 1, . . . , ⌊d−1

2
⌋.(5)

Remark 3.5. To study the problem it might be convenient to write the inequality
in Problem 3.3 more explicitly. If ∆ is a triangulation of an Sd−2-bundle over S1,
then it has one dimensional homology in dimensions 1 and d − 2 so g̃0(∆) = 1,
g̃1(∆) = g1(∆) and

g̃k(∆) = gk(∆)− (−1)k
(
d+ 1

k

)
for k ≥ 2.

Also, we have

dimF(R/(x1, . . . , xd)
2)k =

(
n− 2d+ k − 2

k

)
+ d

(
n− 2d+ k − 3

k − 1

)
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for k ≥ 2 since as vector spaces we have an isomorphism (as vector spaces)

R/(x1, . . . , xd)
2 ∼= F[xd+1, . . . , xn−d−1]

⊕
(⊕d

k=1xkF[xd+1, . . . , xn−d−1]).

Remark 3.6. The topological type of ∆ in Theorem 3.4 given in [Mu] is Sd−2 × S1

when d is even and Sd−2×S1 when d is odd. We are not sure if the existence of
triangulations satisfying (5) depends on a topological type.

4. Algebraic meanings of h′′- and g̃-vectors

In this section, we explain algebraic meanings of h′′- and g̃-vectors, in particu-
lar, explain how Theorem 3.2 follows from known results. For further results and
backgrounds on these vectors, see the survey article [KN].

For a graded S-module M , its socle is the submodule Soc(M) = {f ∈ M | mf =
0}, where m = (x1, . . . , xn) is the graded maximal ideal of S. Below is an algebraic
meaning of h′- and h′′-vectors.

Theorem 4.1. Let ∆ be a triangulation of a connected closed (d− 1)-manifold with
the vertex set [n], Θ an l.s.o.p. for F[∆] and R = F[∆]/ΘF[∆]. Then

(1) (Schenzel’s formula) Hilb(R, t) =
∑d

k=0 h
′
k(∆)tk.

(2) (Novik–Swartz) Let N =
⊕d−1

k=1 Soc(R)k. Then

(a) Hilb(N, t) =
∑d−1

k=1

(
d
k

)
βk−1(∆)tk,

(b) Hilb(R/N, t) =
∑d

k=0 h
′′
k(∆)tk, and

(c) R/N is Gorenstein, in particular, h′′
i (∆) = h′′

d−i(∆) for all i.

The statement (1) is due to Schenzel [Sc] while (2) appear in [No, NS1, NS2]. We
next state an algebraic meaning of g̃-vectors, which essentially appeared in [APP]
and in [MN].

Theorem 4.2. Let ∆ be a triangulation of a connected closed (d− 1)-manifold. Let
Θ = θ1, . . . , θd+1 ∈ S1 be general linear forms and R′ = F[∆]/ΘF[∆]. Then

(1) dimFR
′
k = h′

k(∆)− h′′
k−1(∆) for k ≤ d+1

2
.

(2) There is an ideal J of R′ satisfying the following conditions
(a) dimF Jk =

(
d+1
k

)
βk−1(∆) for k ≤ d

2
, and

(b) Hilb(R′/J, t) =
∑⌊ d

2
⌋

k=0 g̃k(∆)tk.

Proof Sketch. Let R and N be as in Theorem 4.1. We recall the following known
facts.

(I) The multiplication ×θd+1 : Rk−1 → Rk is surjective for k ≥ d
2
+ 1.

(II) The multiplication ×θd+1 : (R/N)k−1 → (R/N)k is injective for k ≤ d+1
2

and

is surjective for k ≥ d+1
2
.

The statement (I) is a consequence of [Sw, Theorem 2.6] and the algebraic g-theorem
[Adi]. Also, the statement (II) appears in [APP].

Now the injectivity in (II) tells that, for k ≤ (d+ 1)/2, the kernel of

×θd+1 : Rk−1 → Rk

is Nk−1, so dim(R′)k = h′
k(∆)− h′′

k−1(∆) proving (1).
We now consider (2). By (1) it suffices to prove (b). By taking the Matlis dual

of the short exact sequence 0 → N → R → R/N → 0, we have the exact sequence

0 −→ (R/N)∨
ϕ−→ R∨ −→ N∨ −→ 0
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where M∨ denotes the Matlis dual of a graded S-module M . Since θd+1N = 0, we
have θd+1N

∨ = 0, which tells that θd+1R
∨ is a submodule of Imϕ. Since R/N is

Gorenstein, we have R/N ∼= (R/N)∨ ∼= Imϕ if we shift the grading by d. Then,
since ϕ(θd+1(R/N)∨) ⊂ θd+1R

∨,

Imϕ/(θd+1R
∨) ∼= R′/J

for some ideal J of R′. We prove that J satisfies the desired conditions.
The surjectivity (I) tells that ×θd+1 : R

∨
−k → R∨

−k+1 is injective for
d
2
+1 ≤ k ≤ d,

so

dimF(θd+1R
∨)−k+1 = dimF(R

∨)−k = dimFRk for k ≥ d/2 + 1.

Recall h′′
k(∆) = h′′

d−k(∆) and βk−1(∆) = βd−k(∆) for all k. Then, for k ≤ d
2
, since

R/N ∼= Imϕ, we have

dim(Imϕ/θd+1R
∨)−d+k = dim(R/N)∨−d+k − dim(θd+1R

∨)−d+k

= dim(R/N)d−k − dim(R)d−k+1

= h′′
d−k(∆)− h′

d−k+1(∆)

= h′′
d−k(∆)− h′′

d−k+1(∆)−
(

d

d− k + 1

)
βd−k(∆)

= h′′
k(∆)− h′′

k−1(∆)−
(

d

k − 1

)
βk−1(∆)

= h′
k(∆)− h′′

k−1(∆)−
(
d+ 1

k

)
βk−1(∆)

= g̃k(∆).

Thus

dimF(R
′/J)k = dimF(Imϕ/θd+1R

∨)−d+1 = g̃k(∆)

for k ≤ d
2
. Also, since Imϕ/θd+1R

∨ is a quotient of Imϕ/θd+1Imϕ ∼= (R/N)/θd+1(R/N),

the surjectivity in (II) tells (R′/J)k = 0 for k > d
2
, so Hilb(R′/J, t) =

∑⌊ d
2
⌋

k=0 g̃k(∆)tk

as desired. □

Remark 4.3. For the proof, we follow the argument in [MN]. It would be possible
to prove this theorem using the partition complex, a recent argument given in [AY],
which may give a better understanding for the ideal J .

Theorem 3.2 easily follows from the previous result.

Proof of Theorem 3.2. Let Θ, R′ and J be as in Theorem 4.2. Since R′ ∼= S/(I∆ +
(Θ)) and S/(Θ) ∼= R = F[x1, . . . , xn−d−1], we have R′/J ∼= R/I for some ideal I in
R. It suffices to show that dimF I2 ≥

(
d+1
2

)
β1(∆). But this inequality follows from

the trivial inequality dimF I2 ≥ dimF J2 and Theorem 4.2(2-a). □

5. Example

We will not give a general construction used to prove Theorem 3.4, but present
one example of a triangulation Γ of S5×S1 whose g̃-vector coincides with the Hilbert
series of F[x1, . . . , x8]/(x1, . . . , x7)

2, that is, g̃(Γ) = (1, 8, 8, 8).
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Consider the simplicial complexB on the vertex set {0, 1, . . . , 8, 1̄, . . . , 7̄, v0, . . . , v6}
generated by the following simplices

01234567 01234578 01235678 01345678
7̄1234567 7̄1234578 7̄1235678 7̄1345678
6̄7̄234567 6̄7̄234578 6̄7̄235678
5̄7̄6̄34567 5̄7̄6̄34578 5̄7̄6̄35678 5̄7̄345678
4̄7̄6̄5̄4567 4̄7̄6̄5̄4578 4̄7̄5̄45678
3̄7̄6̄5̄4̄567 3̄7̄6̄5̄4̄578 3̄7̄6̄5̄5678 3̄7̄5̄4̄5678
2̄7̄6̄5̄4̄3̄67 2̄7̄6̄5̄3̄678 2̄7̄5̄4̄3̄678
1̄7̄6̄5̄4̄3̄2̄7 1̄7̄6̄5̄4̄3̄78 1̄7̄6̄5̄3̄2̄78 1̄7̄5̄4̄3̄2̄78
7̄6̄5̄4̄3̄2̄1̄v0 6̄5̄4̄3̄2̄1̄v0v1 5̄4̄3̄2̄1̄v0v1v2 4̄3̄2̄1̄v0v1v2v3
3̄2̄1̄v0v1v2v3v4 2̄1̄v0v1v2v3v4v5 1̄v0v1v2v3v4v5v6

The simplicial complex B is a shellable triangulated 7-dim ball with the h-vector

h(B) = (1, 15, 8, 8, 4, 0, 0, 0, 0)

and it boundary ∂B has the g-vector

g(∂B) = (1, 15, 8, 8).

Note that 0123456 and v0v1v2v3v4v5v6 are facets of ∂B. Let Γ be the simplicial com-
plex obtained from ∂B\{0123456, v0v1v2v3v4v5v6} by identifying v0 → 0, . . . , v6 → 6.
Note that the vertex set of Γ is {0, 1, . . . , 8, 1̄, . . . , 7̄}. The operation ∂B → Γ is a
combinatorial handle addition (see [NS1, §5]), so |Γ| is homeomorphic to either
S5 × S1 or S5×S1. A routine computation tells that Γ is not orientable, so it must
triangulates S5×S1. Also, by a simple counting, we can see that

g̃(Γ) = g(∂B)− (0, 7, 0, 0) = (1, 8, 8, 8).

6. Related Problems

Here we add a few more problems relating to Problem 3.3.

Construction of the equality case. Theorem 3.4 is not perfect since it say noth-
ing about the case k = d

2
. It would be desirable to have a construction including

k = d
2
case.

Problem 6.1. Let d ≥ 4 be an even integer, n ≥ 2d+1 and R = R[x1, . . . , xn−d−1].
Is there an n vertex triangulation of Sd−2 × S1 such that

g̃k(∆) = dimF(R/(x1, . . . , xd)
2)k for k = 0, 1, . . . , d

2
?

More general upper bounds. In Problem 3.3, we consider Sd−2-bundles over S1

since triangulations of these manifolds are well-studied, but of course a bound which
holds for more general manifolds would be desirable. The next problem might be a
natural generalization of Problem 3.3.

Problem 6.2. Let ∆ be an n vertex triangulation of a connected closed (d − 1)-
dimensional manifold with βℓ(∆) ̸= 0, where ℓ < d

2
. Is it true that

g̃k(∆) ≤ dimF(F[x1, . . . , xn−d−1]/(x1, . . . , xd+1−ℓ)
ℓ+1)k for k ≤ d

2
?
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Interesting special cases of the above problem would be triangulations of the
sphere product Sℓ × Sd−1−ℓ.
It would be also interesting to consider similar guess for manifolds M such that

βk(M) ̸= 0 for many k like a projective space RPd or a torus S1 × · · · × S1. But, at
this moment, it is not clear how we can find a concrete guess on upper bounds of
g̃-vectors for triangulations of these manifolds from Theorem 4.2.

Buchsbaum complexes. The h′′-vectors works well not only for triangulated man-
ifold but also a more general class of simplicial complexes called Buchsbaum com-
plexes. A (d− 1)-dimensional simplicial complex ∆ is said to be Buchsbaum (over

F) if H̃k(lk∆(F );F) ̸= 0 for k ̸= d − 1 − #F for any non-empty face F ∈ ∆. The
following result is due to Novik and Swartz [NS1].

Theorem 6.3. Let ∆ be a (d− 1)-dimensional Buchsbaum simplicial complex with
the vertex set [n], Θ an l.s.o.p. for F[∆] and R = F[∆]/(ΘF[∆]). There is a sub-
module N ⊂ Soc(R) such that

(1) Hilb(N, t) =
∑d−1

k=1

(
d
k

)
βk−1(∆)tk,

(2) Hilb(R/N, t) =
∑d

k=0 h
′′
k(∆)tk.

Answers to the following problems may help understanding Problems 3.3, 6.1 and
6.2.

Problem 6.4. Let ∆ be a (d−1)-dimensional Buchsbaum simplicial complex having
n vertices. Is it true that if βℓ(∆) ̸= 0 then

h′′
k(∆) ≤ dimF(F[x1, . . . , xn−d]/(x1, . . . , xd−ℓ)

ℓ+1)k for k = 0, 1, . . . , d?

Problem 6.5. For all integers ℓ, d, n satisfying 0 ≤ ℓ ≤ d − 1 and n ≥ 2d − ℓ, can
we find a (d−1)-dimensional Buchsbaum simplicial complex ∆ such that βℓ(∆) ̸= 0
and

h′′
k(∆) = dimF(F[x1, . . . , xn−d]/(x1, . . . , xd−ℓ)

ℓ+1)k for k = 0, 1, . . . , d?
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