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Abstract. In the past three decades, the study of rhombus tilings and domino

tilings of various plane regions has been a thriving subfield of enumerative

combinatorics. Physicists classify such work as the study of dimer covers of
finite graphs. In this article we move beyond dimer covers to trimer covers,

introducing plane regions called benzels that play a role analogous to hexagons
for rhombus tilings and Aztec diamonds for domino tilings, inasmuch as one

finds many (so far mostly conjectural) exact formulas governing the number

of tilings.

1. Introduction

If G = (V,E) is a finite graph, a trimer on G is a three-element subset of
V whose induced subgraph in G is connected, and a trimer cover is a partition
of V into trimers. Solving the trimer model for G means counting the possible
trimer covers. In the physics literature one often assigns weights to the trimers,
and solving the weighted model means finding the sum of the weights of all the
trimer covers of G, where the weight of an individual trimer cover is the product
of the weights of its constituent trimers; this sum is called the partition function.
As a special case, one can set some of the weights equal to 1 and the rest equal
to 0; then the partition function is just the number of trimer covers that only use
“permitted” trimers (trimers that have been assigned weight 1).

Physicists have studied the asymptotics of the weighted trimer model on the
triangular lattice and obtained formulas for the entropy in various regimes (see [10]).
These results can be seen as analogous to formulas for the entropy of dimer models
on various kinds of finite graphs. However, as far as I am aware there have not been
(up to now) any exact enumerative results for trimer models on finite subgraphs
of the triangular lattice in the style of the well-known enumerations of rhombus
tilings of hexagons and domino tilings of the Aztec diamond [6].

In this article I introduce finite subgraphs of the triangular lattice that should
interest enumerative combinatorialists inasmuch as the number of trimer covers
appears to be given by exact formulas in many cases. See Figure 1 which shows both
a trimer cover of a finite subgraph of the triangular lattice and the associated tiling
of a dual 2-complex whose faces correspond to vertices of the triangular lattice. In
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Figure 1. The (9,9)-benzel tiled by stones and bones and the
associated trimer cover of the (9,9)-benzel graph.

tiling language, the tiled region in the Figure is a polyhex and the tiles are trihexes.
I have dubbed the tiled region a benzel, and the allowed tiles stones and bones. I
will switch between the trimer picture and the tiling picture throughout the article.
The graph admits an essentially unique coloring with the colors red, blue, and green
in which no two adjacent vertices have been assigned the same color; under such
a coloring, each stone-trimer and bone-trimer contains exactly one vertex of each
color.

This article is a companion to the talk I gave at the Open Problems in Algebraic
Combinatorics conference on May 18, 2022; the slides and video can be accessed
through the conference website.

Consider the complex plane tiled by unit hexagonal cells centered at 1, ω, and
ω2 (here and hereafter ω denotes e2πi/3); the cell centered at α has corners at
α ± 1, α ± ω, and α ± ω2. Given positive integers a, b satisfying 2 ≤ a ≤ 2b and
2 ≤ b ≤ 2a, we define the (a, b)-benzel as the union of the cells that lie fully
inside the hexagon with vertices aω + b, −aω2 − b, aω2 + bω, −a − bω, a + bω2,
and −aω− bω2 (a hexagon centered at 0 with threefold rotational symmetry whose
side-lengths alternate between 2a − b and 2b − a, degenerating to a triangle when
a = 2b or b = 2a), as shown in Figure 2 for a = 4, b = 6. (Mnemonically, a is the
height of the top edge of the hexagon above 0, and b is the depth of the bottom edge
of the hexagon below 0, using appropriately scaled units.) We lose no generality
in assuming 2 ≤ a ≤ 2b and 2 ≤ b ≤ 2a, since the (a, b)-benzel as defined above
coincides with the (a, a− b)-benzel when a > 2b and with the (b−a, b)-benzel when
b > 2a, the former satisfying a ≤ 2(a− b) and the latter satisfying b ≤ 2(b− a).

Here is an alternative description of benzels in terms of the centers of the cells
using barycentric coordinates relative to the triangle with vertices 1, ω, and ω2.
Each cell’s center point α belongs to Z[ω] and can be represented by the unique
(i, j, k) ∈ Z3 satisfying i + jω + kω2 = α and i + j + k = 1 (here and hereafter i
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Figure 2. The (4,6)-benzel and its enclosing hexagon.

denotes a nonnegative integer as opposed to the square root of −1). Then the (a, b)-
benzel consists of those cells whose centers (i, j, k) satisfy −(a−1) ≤ j−i, k−j, i−k ≤
b−1. Figure 3 shows the (4,6)-benzel with its cells marked with the barycentric
coordinates of their respective center points.

Let V = {(i, j, k) ∈ Z3 : i + j + k = 1, −(a−1) ≤ j−i, k−j, i−k ≤ b−1}.
Given (i1, j1, k1) and (i2, j2, k2) in V , join (i1, j1, k1) and (i2, j2, k2) by an edge
when |i1−i2|+ |j1−j2|+ |k1−k2| = 2 (that is, when the unit hexagons centered on
those two vertices share an edge). This is the (a, b)-benzel graph.

The (a, b)-benzel has threefold rotational symmetry but for most a, b it does not
have bilateral symmetry. Exchanging a and b corresponds to reflecting the benzel
across a horizontal axis (or if one prefers across an axis making a 60 degree angle
with the horizontal axis).

We consider tilings of the (a, b)-benzel by way of five sorts of prototiles. These
prototiles (shown in Figure 4) are the right(-pointing) stone, the left(-pointing)
stone, the vertical bone, the rising bone, and the falling bone. The right stone
is a benzel (specifically, the (2,2)-benzel) but the left stone is not. As usual, the
allowed tiles are the translates of the prototiles. Dually we form spanning subgraphs
of the (a, b)-benzel graph whose connected components all consist of three vertices.
Figure 1 shows a tiling of the (9,9)-benzel and the associated trimer cover of the
(9,9)-benzel graph.
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Figure 3. Barycentric coordinates for the cells of the (4,6)-benzel.

There is a third kind of trihex that consists of three hexagons whose centers
form a 120-degree angle. Timothy Chow has dubbed this kind of tile a phone.
Since the associated trimers do not respect the tripartite nature of the triangular
lattice, I have chosen to exclude those trimers from consideration here. This is not
to say that such trimers are unworthy of study. Just as enumeration of dimer covers
should not be limited to the bipartite case, enumeration of trimer covers should not
be limited to the tripartite case. However, it seems best to start with the problems
that are likely to be easier. In particular, the Conway-Lagarias invariant discussed
below only applies if all our trihexes are stones and bones.

Figure 4. The five prototiles: the right stone, the left stone, the
vertical bone, the rising bone, and the falling bone.
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Conway and Lagarias [2] studied tilings like the ones considered here (calling
stones and bones T2 and L3 tiles respectively). They showed that for any simply-
connected region in the hexagonal grid that can be tiled by stones and bones,
the total area of the right stones minus the total area of the left stones does not
depend on the specific tiling but only depends on the region being tiled. This is
the Conway-Lagarias invariant of the region. It can be shown (see the companion
article [4]) that the area of the (a, b)-benzel (as measured by the number of tiles)
is given by

(−a2 + 4ab− b2 − a− b)/2 if a+ b ≡ 0 or 2 (mod 3),
(−a2 + 4ab− b2 − a− b+ 2)/2 if a+ b ≡ 1 (mod 3)

while the value of the Conway-Lagarias invariant is

(3a2 − 6ab+ 3b2 − a− b)/2 if a+ b ≡ 0 (mod 3),
(−a2 + 4ab− b2 − a− b+ 2)/2 if a+ b ≡ 1 (mod 3),
(3a2 − 6ab+ 3b2 + a+ b− 2)/2 if a+ b ≡ 2 (mod 3).

(The expressions in Theorem 2 of [4] have opposite sign because the benzels in that
article are mirror images of the benzels considered here.) Note that when a+ b ≡ 1
(mod 3), the Conway-Lagarias invariant is equal to the area of the benzel so that
the tiling must consist entirely of right-pointing stones; for instance, this is the case
with the (4,6)-benzel shown earlier.

The set of 5 prototiles has 25− 1 = 31 nonempty subsets, and for each, we can
ask in how many ways it is possible to tile the (a, b)-benzel, that is, in how many
ways it is possible find translates of the prototiles whose interiors are disjoint and
whose union is the benzel. There is some redundancy here. Because the benzel has
threefold rotational symmetry, and because 120 degree rotations preserve the two
stones’ orientation (right versus left), the number of tilings depends only on (a)
whether right stones are allowed, (b) whether left stones are allowed, and (c) how
many of the three kinds of bones are allowed (0, 1, 2, or 3). Thus there are really
only (2)(2)(4)− 1 = 15 classes of tiling problems to consider. For 0 ≤ i, j ≤ 1 and
0 ≤ k ≤ 3 we define Tijk(a, b) as the number of ways to tile the (a, b)-benzel if the
set of allowed prototiles contains the right stone iff i = 1, contains the left stone iff
j = 1, and contains k of the bones. We say that such a tiling is an i, j, k tiling.

It is not hard to show that for each of the 15 cases, Tijk(a, b) = Tijk(b, a). It
is also not hard to show that the (n, 2n)-benzel is the same as the (n, 2n − 1)-
benzel and the (n, 2n− 2)-benzel. Consequently, in the tables that follow I provide
values for Tijk(a, b) only for 2 ≤ a ≤ 2b − 2 and 2 ≤ b ≤ 2a − 2. Lastly, it is
not hard to show that when i = 0 and a + b ≡ 2 (mod 3), Tijk(a, b) = 0. That is
because in this case the Conway-Lagarias invariant is equal to the positive number
(3(a− b)2 + (a+ b− 2))/2, implying that every tiling of the (a, b)-benzel must have
at least one right-pointing stone.

David desJardins wrote a general purpose program TilingCount that I used to
enumerate tilings of regions with various sets of allowed prototiles. This led to the
questions and conjectures that appear below. I am happy to share the code and the
data on which my conjectures are based (much of which can be found in the Online
Encyclopedia of Integer Sequences). Table 1 is a map of the first eighteen problems
presented in this article as they relate to those fifteen cases. Rows describe which
stones are allowed; columns describe how many bones are allowed. (This table omits
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Table 1. A map of the first eighteen problems.

Two kinds of bones Three kinds of bones
No stones (no tilings exist) type 003: prob. 1
Left stones type 012: probs. 2–3 type 013: prob. 4

Right stones type 102: prob. 5 type 103: probs. 6–7
Both kinds of stones type 112: probs. 8–13 type 113: probs. 14–18

cases where the number of allowed bone prototiles is zero or one; in such situations
at most one tiling exists, even when both of the stone prototiles are allowed.)

Benzels behave differently according to whether a+ b is 0, 1, or 2 (mod 3), so
in what follows we will sometimes subdivide analyses according to the congruence
class of a+ b.

In the cases where only two kinds of bone tiles are permitted, the allowed tilings
can be viewed as ribbon tilings, as in [5]; indeed, this was the mode of presentation
employed in [2], with four of the five prototiles being depicted as ribbons. Switching
over to the ribbon tilings presentation has already yielded solutions to problems 2
and 3 in [3], and is likely to provide leverage on other problems in the first column
of the table.

2. No stones, three kinds of bones

Prior to the conference, I was able to show that if an (a, b)-benzel can be tiled
by bones alone, then we must have a = k(3k − 1)/2 and b = k(3k + 1)/2 (or vice
versa) for some k ≥ 2. Several attending students found a proof that this necessary
condition is also sufficient. (Note that such benzels belongs to the case a + b ≡ 0
(mod 3).) Jesse Kim found the most complete solution, providing an explicit proof
that the tiling he described works for all k. It appears (see OEIS entry A364134)
that the number of such tilings grows exponentially in k4.

Problem 1: Find an exact formula for T003(k(3k − 1)/2, k(3k + 1)/2).
Of course, even short of an exact formula, any method of determining the num-

ber of tilings that is more efficient than brute-force enumeration (e.g., a recurrence
relation) would be of interest.

See [4] for more discussion of no-stones tilings of benzels.

3. Left stones, two kinds of bones

Table 2 shows the values of T012(a, b) for a, b ≤ 10.
Problem 2: Is it true that T012(3n, 3n) = 2nn! for n ≥ 1?
Problem 3: Is it true that T012(3n+ 1, 3n+ 2) = 2nn! for n ≥ 1?
Comment: Colin Defant, Rupert Li, Benjamin Young and I worked on problem

2 during the conference and later succeeded in solving Problems 2 and 3; see [3].
We were also able to verify that the pattern of entries equal to 0 and 1 in Tables 2
through 4 persists for all larger values of a and b.

4. Left stones, three kinds of bones

Table 3 shows the values of T013(a, b) for a, b ≤ 10.
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Table 2. Values of T012(a, b).

a\b 2 3 4 5 6 7 8 9 10
2 0
3 2 0
4 0 0 2 0
5 2 0 0 0 0
6 0 0 8 0 0 0 0
7 0 0 0 8 0 0
8 0 0 8 0 0 0
9 0 0 0 48 0
10 0 0 0 0 0

Table 3. Values of T013(a, b).

a\b 2 3 4 5 6 7 8 9 10
2 0
3 3 0
4 0 0 9 0
5 9 0 0 2 0
6 0 0 144 0 0 0 0
7 2 0 0 1143 0 0
8 0 0 1143 0 0 825
9 0 0 0 73454 0
10 0 0 825 0 0

When a and b are such that the Conway-Lagarias invariant is strictly positive,
the (a, b)-benzel cannot be tiled by bones and left stones; the corresponding entries
in the table must be zero. On the other hand, when a and b are such that the
Conway-Lagarias invariant is negative or zero, the entries in the table are observed
to be positive, though I see no reason for concluding that they are.

Problem 4: Is it true that when the Conway-Lagarias invariant associated
with the (a, b)-benzel is negative or zero, tilings of type 013 exist?

5. Right stones, two kinds of bones

Table 4 shows the values of T102(a, b) for a, b ≤ 10.
Problem 5: Is it true that

T102(n+ 3k, 2n+ 3k − 1) =

k∏
i=1

(2i)!(2i+ 2n− 2))!

(i+ n− 1)!(i+ n+ k − 1)!

for k ≥ 0 and n ≥ 1 (except (k, n) = (0, 1))? Equality has been verified for
0 ≤ k ≤ 5, 1 ≤ n ≤ 5.

Comment: This formula and the a, b symmetry relation together provide a con-
jectural enumeration of tilings of type 102 of the (a, b)-benzel for all a, b satisfying
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Table 4. Values of T102(a, b).

a\b 2 3 4 5 6 7 8 9 10
2 1
3 0 1
4 1 2 0 1
5 0 1 4 0 1
6 1 4 0 1 10 0 1
7 0 1 8 0 1 28
8 1 10 0 1 24 0
9 0 1 24 0 1
10 1 28 0 1 48

Table 5. Values of T103(a, b).

a\b 2 3 4 5 6 7 8 9 10
2 1
3 0 1
4 1 7 0 1
5 0 1 33 2 1
6 1 33 0 1 164 21 1
7 2 1 666 0 1 864
8 1 164 0 1 12430 0
9 21 1 12430 0 1
10 1 864 0 1 655721

a + b ≡ 2 (mod 3). (When a + b ≡ 1, the number of tilings is 0; when a + b ≡ 2,
the number of tilings is 1.)

Comment: Three special cases merit special attention. When k = 1, the right-
hand side of the equation is twice the nth Catalan number; when n = 1, the
right-hand side of the equation is 2kk!; and when n = 2, the right-hand side of the
equation is 2k(k + 1)!.

6. Right stones, three kinds of bones

Table 5 shows the values of T103(a, b) for a, b ≤ 10.
Problem 6: Is is true that T103(n, 2n−3) = (3n+3)(3n−7)!/(n−5)!(2n−1)!

for n ≥ 5? (The formula also works for n = 3 and n = 4 if one treats 1/(−1)! and
1/(−2)! as 0.) Equality has been verified for 5 ≤ n ≤ 16.

Aside from the fact that Problems 2 and 6 involve different prototile sets, the
two problems differ in another important way: in problem 2 we have b/a → 1 as
n → ∞ while in problem 6 we have b/a → 2 as n → ∞. In the former case we
say that the sequence is associated with a central diagonal of the table of values
while in the latter case we say that the sequence is associated with a peripheral
diagonal (recall that a/b and b/a cannot exceed 2).
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Table 6. Values of T112(a, b).

a\b 2 3 4 5 6 7 8 9 10
2 1
3 2 1
4 1 4 6 1
5 6 1 16 22 1
6 1 16 48 1 68 90 1
7 22 1 224 512 1 304
8 1 68 512 1 3360 6736
9 90 1 3360 15360 1
10 1 304 6736 1 168960

Table 7. Values of T112(3n, 3n).

21,
24 31,

210 31 51,
216 71 111 131,

228 32 71 131 171,
238 32 111 172 192,

250 51 112 131 171 192 232,
264 33 54 111 132 191 233 291,

284 34 53 132 171 232 293 312, . . .

In parallel with the observations that preceded Problem 4, note that when
the Conway-Lagarias invariant of a benzel is strictly negative, the benzel cannot
be tiled by bones and right-pointing stones; the corresponding entries in the table
must be zero. On the other hand, when a and b are such that the Conway-Lagarias
invariant is positive or zero, the entries in the table are observed to be positive,
though I see no reason for concluding that they are.

Problem 7: Is it true that when the Conway-Lagarias invariant associated
with the (a, b)-benzel is positive or zero, tilings of type 103 exist?

7. Both stones, two kinds of bones

Table 6 shows the values of T112(a, b) for a, b ≤ 10. Table 7 gives the first few
values of T112(3n, 3n) in factored form.

Problem 8: With T (n) denoting T112(3n, 3n), is it true that the second quo-
tient T (n)T (n+ 2)/T (n+ 1)2 is equal to

256(2n+ 3)2(4n+ 1)(4n+ 3)2(4n+ 5)

27(3n+ 1)(3n+ 2)2(3n+ 4)2(3n+ 5)

for all n ≥ 1? Equality has been verified for 1 ≤ n ≤ 7. See OEIS entry A352207.
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Table 8. Values of T112(3n+ 1, 3n+ 1).

22,
25 71,

210 31 51 111,
217 71 111 132,

230 31 131 172 191,
238 31 111 172 193 231, . . .

Table 9. Values of T112(3n+ 1, 3n+ 2).

21 31,
29,

29 31 51 71 111,
225 31 71 131,

228 32 111 131 172 191,
250 31 111 171 192 231,

249 32 52 112 132 171 192 233,
281 33 54 132 232 292 311, . . .

Comment: David desJardins found the pattern governing the numbers T112(n),
with assistance from Christian Krattenthaler, Greg Kuperberg and other members
of the domino listserv. The same is true for Problem 10.

Table 8 gives the first few values of T112(3n+ 1, 3n+ 1) in factored form.
With T (n) = T112(3n + 1, 3n + 1) with n ≥ 1, it appears that T (n) has no

prime factor greater than or equal to 4n.
Problem 9: Find a formula governing T112(3n+1, 3n+1). See OEIS sequence

A364481.
Table 9 gives the first few values of T112(3n+ 1, 3n+ 2) in factored form.
Problem 10: With T (n) denoting T112(3n+1, 3n+2), is it true that T (n)T (n+

3)/T (n+ 1)T (n+ 2) is equal to

65536(2n+ 3)(2n+ 5)2(2n+ 7)(4n+ 3)(4n+ 5)2(4n+ 7)2(4n+ 9)2(4n+ 11)

729(3n+ 2)(3n+ 4)3(3n+ 5)2(3n+ 7)2(3n+ 8)3(3n+ 10)

for all n ≥ 1? Equality has been verified for 1 ≤ n ≤ 8. See OEIS entry A364482.
Table 10 gives the first few values of T112(3n− 1, 3n) in factored form.
With T (n) = T112(3n − 1, 3n) with n ≥ 1, it appears that T (n) has no prime

factor greater than or equal to 4n.
Problem 11: Find a formula governing T112(3n− 1, 3n). See OEIS sequence

A364483.
We now switch from central diagonals to peripheral diagonals.
Problem 12: Is it true that T112(n + 2, 2n + 1) is the “nth large Schröder

number” (see sequence A006318 in the OEIS) for all n ≥ 1? Equality has been
verified for 1 ≤ n ≤ 15.
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Table 10. Values of T112(3n− 1, 3n).

11,
24,

25 31 51 71,
216 111 131,

219 31 71 111 132 171,
239 31 172 192,

237 51 112 131 172 193 232, . . .

Table 11. Values of T113(a, b).

a\b 2 3 4 5 6 7 8 9 10
2 1
3 3 1
4 1 10 18 1
5 18 1 84 142 1
6 1 84 459 1 724 1266 1
7 142 1 5766 19057 1 6516
8 1 724 19057 1 380597 1077681
9 1266 1 380597 3759277 1

1 0 1 6516 1077681 1 185961668

Problem 13: Is it true that T112(n+ 2, 2n) is the number of “royal paths in a
lattice of order n” (see sequence A006319 in the OEIS) for all n ≥ 1? Equality has
been verified for 1 ≤ n ≤ 15.

8. Both stones, three kinds of bones

Finally we come to the most permissive situation: all prototiles are allowed.
Table 11 shows the values of T113(a, b) for a, b ≤ 10.

Problem 14: Is it true that T113 = 1 when a + b is 1 (mod 3)? (Note that
a+b ≡ 1 is the situation in which the Conway-Lagarias invariant coincides with the
area of the region being tiled, so that all the tiles must be right-pointing stones.)

Comment: This problem is resolved in the affirmative by Theorem 1.1 of [3].
It is disappointing that the data for a + b 6≡ 1 (mod 3) do not suggest exact

conjectures. On the other hand, it is intriguing that congruence phenomena occur,
analogous to Cohn’s 2-adic continuity theorem proved in [1] and conjectural 2-adic
phenomena of a similar kind discussed in [7].

Problem 15: Is T113(n, 2n− 4) 2-adically continuous as a function of n ≥ 5?
Comment: The sequence appears to be constant mod 2, constant mod 4, 2-

periodic mod 8, and 8-periodic mod 16 (with repeating pattern 4, 4, 4, 4, 4, 12, 4,
12). The case n = 4 breaks the pattern. See sequence A364416 in the OEIS.

Problem 16: Is T113(n, 2n− 3) 2-adically continuous as a function of n ≥ 4?
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Comment: The sequence appears to be constant mod 2, constant mod 4, 2-
periodic mod 8, and 8-periodic mod 16 (with repeating pattern 2, 14, 2, 14, 10, 6,
10, 6). The case n = 3 breaks the pattern. See sequence A364417 in the OEIS.

At the OPAC 2022 meeting, David Speyer suggested that one might use a
different definition of a trimer, namely, a path consisting of three vertices and two
edges. Thus, each stone would correspond to three different trimers according to
which 2 of the 3 possible edges one used. Equivalently, one could use the original
definition of a trimer, with the proviso that each stone will count with weight 3.
The new numbers do not satisfy any nice patterns, with one exception: in the case
where all prototiles are allowed, using stones of weight 3 seems to give rise to the
same 2-adic continuity phenomenon we saw in Problems 11 and 12.

Let Tijk(a, b; 3) denote the weighted sum of the i, j, k tilings of the (a, b)-benzel
as defined near the end of section 1, where a tiling with m stones has weight 3m.

Problem 17: Is T113(n, 2n−4; 3) 2-adically continuous as a function of n ≥ 5?
Comment: The sequence appears to be constant mod 2, constant mod 4, con-

stant mod 8, and 8-periodic mod 16 (with repeating pattern 4, 4, 12, 12, 4, 12, 12,
4). The case n = 4 breaks the pattern. See sequence A364418 in the OEIS.

Problem 18: Is T113(n, 2n−3; 3) 2-adically continuous as a function of n ≥ 4?
Comment: The sequence appears to be constant mod 2, constant mod 4, 2-

periodic mod 8, and 8-periodic mod 16 (with repeating pattern 14, 6, 10, 2, 6, 14,
2, 10). The case n = 3 breaks the pattern. See sequence A364438 in the OEIS.

Comment: Given that the number of right stones minus the number of left
stones in a tiling of a benzel is the same for all tilings of that benzel, a different
way to describe the weighting assigned to tilings in Problems 17 and 18 (equivalent
up to a power of 3) is to give weight 1 to left stones and weight 9 to right stones.
During the final stages of preparing this article for publication, I realized that one
could more generally give weight 1 to left stones and weight m to right stones. The
resulting enumerations appear to exhibit p-adic continuity when m+1 is a power of
the prime p. Other forms of congruential consistency appear in the data as well; for
instance, the data for m = 9 appear to satisfy 5-adic continuity. I hope to address
such patterns in future work.

9. Miscellaneous

The next question is not enumerative; it is an old structural question that has
gone unresolved for decades. There are two natural kinds of “2-flips” that can turn
one stones-and-bones tiling into another; the first trades two stones of opposite
orientation for two bones, and the second trades a stone and a bone for a stone of
the same orientation and a bone of a different orientation; see Figure 5.

Problem 19: Can every tiling of a finite simply-connected region using stones
and bones be mutated into every other such tiling by means of a succession of
2-flips?

Comment: It is known that the hypothesis that the region be simply-connected
cannot be dropped. It is also known that if one restricts to tilings of type 112 (that
is, if one prohibits one of the three orientations of bones), then the claim is true;
Sheffield proved an equivalent claim in the context of ribbon tilings [8].

In closing, we turn to the regions that Conway, Lagarias, and Thurston origi-
nally studied in papers [2, 9] that inspired much of my work on tilings: triangles



TRIMER COVERS IN THE TRIANGULAR GRID 13

Figure 5. 2-flips for changing a trimer cover.

of hexagonal cells, with n cells on each side (“Tn regions”). Those three authors
showed that if one uses stones alone, Tn can be tiled by T2’s (that is, by stones)
precisely when n is congruent to 0, 2, 9, or 11 (mod 12). (In our notation, these
are tilings of type 110; such tilings were not discussed above since for benzels they
are not interesting from an enumerative perspective.)

The question we ask is, how many such tiling are there? Sequence A334875
in the OEIS gives the answers for small values of n. If we look at the prime
factorizations of the answers, we notice that the exponent of the prime 2 is creeping
upward. Specifically, the multiplicity of the prime 2 in the factorizations of the
nonzero terms in this sequence goes 0, 0, 1, 3, 2, 3, 4, 3, 4, 3, 5, 8, 6, 8, . . . .
This is a priori surprising, since the probability that a “random” positive integer is
divisible by 2m decreases exponentially as m increases.

Problem 20: As n goes to infinity within the set of natural numbers congruent
to 0, 2, 9, or 11 (mod 12), does the number of tiling of Tn by stones converge 2-
adically to 0?

I am grateful to the organizers of OPAC 2022 for inviting me to give this presenta-
tion. I also thank Colin Defant, Rupert Li, and Ben Young for useful conversations.
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