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The recipe for success

Step 1. Choose a variety

[of “Hodge–Tate type”]

X (F) = {x ∈ Fk | P1(x) = · · · = Pn(x) = 0, Q1(x) 6= 0, . . . ,Qm(x) 6= 0}.

Step 2. Compute point count #X (Fq) over Fq.

Step 3. Compute Poincaré polynomial P(X (C); t):=
∑

i t
i
2 dimH i (X (C)).

Step 4. Profit?

Mixed Hodge polynomial P(X ; q, t) ∈ N
[
q

1
2 , t

1
2

]

Point count #X (Fq) Poincaré polynomial P(X (C); t)

t
1
2 = −q−

1
2 q

1
2 = 1

Interesting number?

q = 1 t
1
2 = 1

The diagram commutes when P(X ; q, t) ∈ N[q, t] (i.e., odd cohomology vanishes).

Question: Which variety should we choose?
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t
1
2 = −q−

1
2 q

1
2 = 1

Interesting number?

q = 1 t
1
2 = 1

The diagram commutes when P(X ; q, t) ∈ N[q, t] (i.e., odd cohomology vanishes).

Question: Which variety should we choose?



The recipe for success

Step 1. Choose a variety [of “Hodge–Tate type”]

X (F) = {x ∈ Fk | P1(x) = · · · = Pn(x) = 0, Q1(x) 6= 0, . . . ,Qm(x) 6= 0}.
Step 2. Compute point count #X (Fq) over Fq.
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t
1
2 = −q−

1
2 q

1
2 = 1

Interesting number?

q = 1 t
1
2 = 1

The diagram commutes when P(X ; q, t) ∈ N[q, t] (i.e., odd cohomology vanishes).

Question: Which variety should we choose?



Gr(k , n;F) := {V ⊆ Fn | dim(V ) = k}

Question

How many points in Gr(k , n;Fq)?

What is the Poincaré polynomial of Gr(k, n;C)?

[n]q := 1 + q + · · ·+ qn−1, [n]q! := [1]q[2]q · · · [n]q[
n

k

]
q

:=
[n]q!

[k]q![n − k]q!

=
∑

λ⊆k×(n−k)

q|λ|.

Point count: # Gr(k, n;Fq) =

[
n

k

]
q

.

Poincaré polynomial:
∑
i

t
i
2 dimH i (Gr(k , n;C)) =

[
n

k

]
t

.

Lame reason: Schubert decomposition.

Cool reason: Mixed Hodge structure is pure, i.e., the mixed Hodge
polynomial P(Gr(k , n); q, t) contains no new information.

Interesting number:

(
n

k

)
.
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What is the Poincaré polynomial of Gr(k, n;C)?

[n]q := 1 + q + · · ·+ qn−1, [n]q! := [1]q[2]q · · · [n]q[
n

k

]
q

:=
[n]q!

[k]q![n − k]q!
=

∑
λ⊆k×(n−k)

q|λ|.

Point count: # Gr(k, n;Fq) =

[
n

k

]
q

.
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Rational Catalan numbers: for 1 6 k 6 n such that gcd(k , n) = 1, let

Ck,n−k :=
1

n

(
n

k

)
.

Counts the number of Dyck paths inside a k × (n − k) rectangle.
Example: k = 3, n = 8, Ck,n−k = 7 :

C ′′k,n−k(t) = t4 + t3 + t2 + t2 + t1 + t1 + t0.

C ′k,n−k(q) = q8 + q6 + q5 + q4 + q3 + q2 + 1.

Ck,n−k := 1
n

(n
k

)

= # Dyckk,n−k

C ′k,n−k(q) := 1
[n]q

[n
k

]
q

q = 1

C ′′k,n−k(t) :=
∑

P∈Dyckk,n−k
tarea(P)

t
1
2 = 1

Ck,n−k(q, t) :=
∑

P∈Dyckk,n−k
tarea(P)qdinv(P)

t
1
2 = −q−

1
2 q

1
2 = 1
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The Catalan variety

Gr(k , n;F) := {V ⊆ Fn | dim(V ) = k}

=
{k × n matrices of rank k}

(row operations)
.

For I of size k , let ∆I (V ) be the maximal minor of V with column set I .

Definition (G.–Lam (2020))

Let gcd(k , n) = 1. The Catalan variety is given by

X ◦k,n := {V ∈ Gr(k, n) | ∆1,...,k(V ) = ∆2,...,k+1(V ) = · · · = ∆n,1,...,k−1(V ) = 1}.

Example:

X ◦2,5 =

{
RowSpan

(
1 0 a b c
0 1 d e f

)∣∣∣∣ −a = 1, ae − bd = 1,
f = 1, bf − ce = 1

}
.

#X ◦2,5(Fq) = q2 + 1, P(X ◦2,5(C); t) = 1 + t, P(X ◦2,5; q, t) = q + t.

Theorem (G.–Lam (2020))

Ck,n−k

Point count #X ◦k,n(Fq) = C ′k,n−k(q)

q = 1

Poincaré polynomial P(X ◦k,n(C); t) = C ′′k,n−k(t)

t
1
2 = 1

Mixed Hodge polynomial P(X ◦k,n; q, t) = Ck,n−k(q, t)

t
1
2 = −q−

1
2 q

1
2 = 1
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Definition (G.–Lam (2020))

Let gcd(k , n) = 1. The Catalan variety is given by

X ◦k,n := {V ∈ Gr(k, n) | ∆1,...,k(V ) = ∆2,...,k+1(V ) = · · · = ∆n,1,...,k−1(V ) = 1}.

Definition (Knutson–Lam–Speyer (2013))

For arbitrary k 6 n, the top open positroid variety is given by
Π◦k,n := {V ∈ Gr(k , n) | ∆1,...,k(V ),∆2,...,k+1(V ), · · · ,∆n,1,...,k−1(V ) 6= 0}.

The torus T ∼= (C∗)n−1 of diagonal matrices acts on Gr(k , n) by column rescaling.

Lemma

The T-action on Π◦k,n is free whenever gcd(k , n) = 1. In this case,

Π◦k,n/T
∼= X ◦k,n and Π◦k,n

∼= X ◦k,n × T .

Corollary

gcd(k , n) = 1 =⇒ P(Π◦k,n; q, t) =
(
q

1
2 + t

1
2

)n−1
P(X ◦k,n; q, t),

#Π◦k,n(Fq) = (q − 1)n−1#X ◦k,n(Fq), P(Π◦k,n(C); t) =
(

1 + t
1
2

)n−1
P(X ◦k,n(C); t).
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k

]
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and # Gr(k , n;Fq) =
[n
k

]
q
.

Corollary

Let gcd(k , n) = 1. Then a uniformly random point of Gr(k , n;Fq) belongs

to Π◦k,n(Fq) with probability
(q − 1)n

qn − 1
.

←− does not depend on k?!

Open Problem

Prove this directly (without using knot theory).
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Arbitrary positroid varieties

Gr(k , n;F) := {V ⊆ Fn | dim(V ) = k} =
{k × n matrices of rank k}

(row operations)
.

Positroid stratification: Gr(k , n) =
⊔
f

Π◦f . [Knutson–Lam–Speyer ’13], [Postnikov ’06]

Let M be a full rank k × n matrix with columns M1,M2, . . . ,Mn.
Extend this labeling periodically to (Mi )i∈Z by setting Mi+n := Mi .
Let fM : {1, 2, . . . , n} → {1, 2, . . . , n} be given by

fM(i) ≡ min{j > i | Mi ∈ Span(Mi+1, . . . ,Mj)} (mod n).

Turns out fM is always a permutation!
For an arbitrary permutation f ∈ Sn, let

Π◦f := {RowSpan(M) ∈ Gr(k, n) | fM = f }.
Let fk,n ∈ Sn be given by fk,n(i) ≡ i + k (mod n) for all i . Then

Π◦fk,n = Π◦k,n.

Point count? Poincaré polynomial? P(Π◦f ; q, t) =?
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Positroid links

Positroid stratification: Gr(k , n) =
⊔
f

Π◦f , where each f is a permutation.

Associate a link Lf (on a torus) to each permutation f ∈ Sn as follows:

Draw an arrow i → f (i) in the NE direction for each i = 1, 2, . . . , n.
Arrows with higher slope go above arrows with lower slope.

f =

(
1 2 3 4 5 6
5 4 6 3 1 2

)
−→

1

2

3

4

5

6

Conclusion

For each permutation f ∈ Sn, get a variety Π◦f and a link Lf ⊆ R3.
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Given a link L, the HOMFLY polynomial P(L; a, q) is defined by

P( ) = 1 and

aP(L+)− a−1P(L−) =
(
q

1
2 − q−

1
2

)
P(L0) , where

L+ L− L0

Theorem (G.–Lam (2020))

Let f ∈ Sn. Then the point count of Π◦f is given by

#Π◦f (Fq) = (q − 1)n−1 · (top a-degree coefficient of P(Lf ; a, q)).

Lemma: T acts freely on Π◦f ⇐⇒ f is a single cycle ⇐⇒ Lf is a knot.

Khovanov–Rozansky link homology yields a polynomial PKR(L; a, q, t)
which specializes to the HOMFLY polynomial P(L; a, q).

Theorem (G.–Lam (2020))

Let f ∈ Sn be a single cycle. Then

P(Π◦f /T ; q, t) = top a-degree coefficient of PKR(Lf ; a, q, t).

Arbitrary f ∈ Sn: LHS = T -equivariant cohomology of Π◦
f with compact support.
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Theorem (G.–Lam (2020))

Let f ∈ Sn be a single cycle.

Interesting number?

#(Π◦f /T )(Fq) = top a-deg. coef. of P(Lf ; a, q)

q = 1

P((Π◦f /T )(C); t) = . . .

t
1
2 = 1

P(Π◦f /T ; q, t) = top a-deg. coef. of PKR(Lf ; a, q, t)

t
1
2 = −q−

1
2 q

1
2 = 1

Question

Is it true that we always have P(Π◦f /T ; q, t) ∈ N[q, t]?

A: No. Smallest known counterexample is a single cycle in S14.

Problem

Find a class of permutations for which P(Π◦f /T ; q, t) ∈ N[q, t].
Interesting numbers?
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Problem

Find a class of permutations for which P(Π◦f /T ; q, t) ∈ N[q, t].
Interesting numbers?

Definition (G.–Lam (2021))

Draw a generic concave curve C from (0, 0) to (n − k , k).

Project it to the unit square.

Segments of higher slope are drawn above segments of lower slope.

The result is a positroid link (knot) Lf , where f ∈ Sn is a single cycle.

The knot Lf depends only on the Young diagram above C .
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Let C be a concave curve and f ∈ Sn the corresponding permutation.

Theorem (G.–Lam (2021))

The q = 1 evaluation of #(Π◦f /T )(Fq) equals the number # DyckC of
Dyck paths that stay above C.

Conjecture (G.–Lam (2021))

P((Π◦f /T )(C); t) =
∑

P∈DyckC
tarea(P).

P(Π◦f /T ; q, t) is the generalized q, t-Catalan number studied by
[Gorsky–Neguţ–Rasmussen ’16], [Oblomkov–Rozansky ’17], [Gorsky–Hawkes–Schilling–Rainbolt ’19]

# DyckC

#(Π◦f /T )(Fq) =
∑

P∈DyckC
q???

q = 1

P((Π◦f /T )(C); t)
?
=
∑

P∈DyckC
tarea(P)

t
1
2 = 1

P(Π◦f /T ; q, t)
?
= generalized q, t-Catalan number

t
1
2 = −q−

1
2 q

1
2 = 1

Open Problem

Compute the point count #(Π◦f /T )(Fq).

Find a statistic dinvC such that P(Π◦f /T ; q, t) =
∑

P∈DyckC
tarea(P)qdinvC (P).
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Bonus: cluster algebras

Quiver Q −→ cluster algebra A(Q). [Fomin–Zelevinsky ’02]

Definition (Muller (2013))

If Q has no arrows then it is locally acyclic.

Suppose that after some mutations, we have found an arrow x → y in
Q such that x has no incoming arrows from mutable vertices.∗

Suppose that Q − x , Q − y , and Q − {x , y} are locally acyclic.

Then Q is also locally acyclic.

Theorem (G.–Lam (2019) + Muller–Speyer (2016))

For any f ∈ Sn, Π◦f is a locally acyclic cluster variety.

That is, the
coordinate ring C[Π◦f ] is a cluster algebra A(Q), where Q is locally acyclic.

[Muller–Speyer ’16], [Serhiyenko–Sherman-Bennett–Williams ’19], [Leclerc ’16]

Theorem (Lam–Speyer (2016))

Suppose that X is a locally acyclic cluster variety. Then P(X ; q, t) is
q, t-symmetric and q, t-unimodal.

Corollary (G.–Lam (2020))

If f ∈ Sn is a single cycle then P(Π◦f /T ; q, t) is q, t-symmetric and
q, t-unimodal.

In particular, for gcd(k , n) = 1, the rational q, t-Catalan numbers
Ck,n−k(q, t) are q, t-symmetric and q, t-unimodal.

q, t-unimodality of Ck,n−k(q, t) was not previously known! [Haiman ’94],

[Haiman ’02], [Mellit ’16], [Carlsson–Mellit ’18], [Gorsky–Hogancamp–Mellit ’21]

Open Problem

Given a concave curve C, find a statistic dinvC such that∑
P∈DyckC

tarea(P)qdinvC (P) is q, t-symmetric and q, t-unimodal.
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Generalization: open Richardson varieties

Let B,B− ⊆ SLn denote the sets of upper and lower triangular matrices.
Let v ,w ∈ Sn be two permutations satisfying v 6 w in the Bruhat order.
The open Richardson variety is

R◦v ,w := (B−vB ∩ BwB)/B ⊆ SLn /B.

Theorem (G.–Lam (2020))

Let v 6 w ∈ Sn be such that v−1w is a single cycle. Then there is an
explicit knot Lv ,w such that

P(R◦v ,w/T ; q, t) = top a-degree coefficient of PKR(Lv ,w ; a, q, t).

[Gorsky–Hogancamp–Mellit ’21]: PKR(Lv ,w ; a, q, t) is q, t-symmetric and unimodal.

Theorem (G.–Lam–Sherman-Bennett–Speyer (2022+))

R◦v ,w is a locally acyclic cluster variety.

Thus, when v−1w is a single cycle,
P(R◦v ,w/T ; q, t) is q, t-symmetric and unimodal.

Partial results: [Leclerc ’16], [Ingermanson ’19], [Ménard ’22]

Parallel work: [Casals–Gorsky–Gorsky–Le–Shen–Simental ’22+]
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Generalization: links from plabic graphs

Let G be a planar bicolored (plabic) graph in the plane.

The planar dual of G is
a quiver QG . One can also define a link LG , as follows:
[Shende–Treumann–Williams–Zaslow ’15], [Fomin–Pylyavskyy–Shustin–Thurston ’17]

Draw all strands, turning right (resp., left) at black (resp.,white) vertices.

At each crossing, the strand with higher complex argument of the tangent vector
(in [0, 2π)) is drawn above the other one.
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When a strand changes the argument from 0 + ε to 2π− ε, it has to travel to the
boundary below all other strands and then come back above all other strands.
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Plabic graph G −→ quiver QG and link LG .

Conjecture (G.–Lam (2022+))

The Fq-point count of the cluster variety SpecA(QG ) equals the top
a-degree coefficient of the HOMFLY polynomial of LG .

When Q is locally acyclic, the Fq-point count of SpecA(QG ) satisfies
a simple recurrence, similar to the HOMFLY skein relation.
We used this to prove the above conjecture for certain classes of
plabic graphs, such as plabic fences.
Unfortunately, not every plabic graph quiver QG is locally acyclic.

Open Problem

Find a class of plabic graphs G for which QG is locally acyclic. Compute
the corresponding Fq-point counts, Poincaré polynomials, mixed Hodge
polynomials, and “interesting numbers.”

Thanks!
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