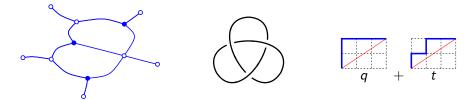
Positroid varieties

Pavel Galashin (UCLA)

Open Problems in Algebraic Combinatorics 2022 May 17, 2022

Joint work with Thomas Lam



Step 1. Choose a variety

 $\boldsymbol{X}(\mathbb{F}) = \{ \mathbf{x} \in \mathbb{F}^k \mid P_1(\mathbf{x}) = \cdots = P_n(\mathbf{x}) = 0, \quad Q_1(\mathbf{x}) \neq 0, \dots, Q_m(\mathbf{x}) \neq 0 \}.$ 

Step 1. Choose a variety

 $X(\mathbb{F}) = \{ \mathbf{x} \in \mathbb{F}^k \mid P_1(\mathbf{x}) = \dots = P_n(\mathbf{x}) = 0, \quad Q_1(\mathbf{x}) \neq 0, \dots, Q_m(\mathbf{x}) \neq 0 \}.$ Step 2. Compute point count  $\#X(\mathbb{F}_q)$  over  $\mathbb{F}_q$ .

Point count  $\#X(\mathbb{F}_q)$ 

<u>Step 1.</u> Choose a variety  $X(\mathbb{F}) = \{\mathbf{x} \in \mathbb{F}^k \mid P_1(\mathbf{x}) = \dots = P_n(\mathbf{x}) = 0, \quad Q_1(\mathbf{x}) \neq 0, \dots, Q_m(\mathbf{x}) \neq 0\}.$ <u>Step 2.</u> Compute point count  $\#X(\mathbb{F}_q)$  over  $\mathbb{F}_q$ . <u>Step 3.</u> Compute Poincaré polynomial  $\mathcal{P}(X(\mathbb{C}); t) := \sum_i t^{\frac{i}{2}} \dim H^i(X(\mathbb{C})).$ 

Point count  $\#X(\mathbb{F}_q)$ 

Step 1. Choose a variety

 $X(\mathbb{F}) = \{\mathbf{x} \in \mathbb{F}^k \mid P_1(\mathbf{x}) = \cdots = P_n(\mathbf{x}) = 0, \quad Q_1(\mathbf{x}) \neq 0, \ldots, Q_m(\mathbf{x}) \neq 0\}.$ 

Step 2. Compute point count  $\#X(\mathbb{F}_q)$  over  $\mathbb{F}_q$ .

Step 3. Compute Poincaré polynomial  $\mathcal{P}(X(\mathbb{C}); t) := \sum_{i} t^{\frac{i}{2}} \dim H^{i}(X(\mathbb{C})).$ Step 4. Profit?

Point count  $\#X(\mathbb{F}_q)$ 

<u>Step 1.</u> Choose a variety  $X(\mathbb{F}) = \{\mathbf{x} \in \mathbb{F}^k \mid P_1(\mathbf{x}) = \dots = P_n(\mathbf{x}) = 0, \quad Q_1(\mathbf{x}) \neq 0, \dots, Q_m(\mathbf{x}) \neq 0\}.$ <u>Step 2.</u> Compute point count  $\#X(\mathbb{F}_q)$  over  $\mathbb{F}_q$ . <u>Step 3.</u> Compute Poincaré polynomial  $\mathcal{P}(X(\mathbb{C}); t) := \sum_i t^{\frac{i}{2}} \dim H^i(X(\mathbb{C})).$ 

Point count  $\#X(\mathbb{F}_q)$ 

 $\underbrace{\underline{\text{Step 1.}}}_{X(\mathbb{F})} \text{ Choose a variety}$   $\overline{X(\mathbb{F})} = \{ \mathbf{x} \in \mathbb{F}^k \mid P_1(\mathbf{x}) = \cdots = P_n(\mathbf{x}) = 0, \quad Q_1(\mathbf{x}) \neq 0, \dots, Q_m(\mathbf{x}) \neq 0 \}.$   $\underbrace{\underline{\text{Step 2.}}}_{\text{Step 3.}} \text{ Compute point count } \#X(\mathbb{F}_q) \text{ over } \mathbb{F}_q.$   $\underbrace{\underline{\text{Step 3.}}}_{i} \text{ Compute Poincaré polynomial } \mathcal{P}(X(\mathbb{C}); t) := \sum_i t^{\frac{i}{2}} \dim H^i(X(\mathbb{C})).$ 

Mixed Hodge polynomial 
$$\mathcal{P}(X; q, t) \in \mathbb{N}\left[q^{rac{1}{2}}, t^{rac{1}{2}}
ight]$$

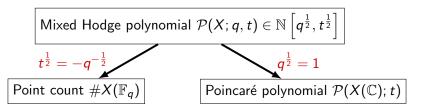
Point count  $\#X(\mathbb{F}_q)$ 

<u>Step 1.</u> Choose a variety [of "Hodge-Tate type"]  $X(\mathbb{F}) = \{\mathbf{x} \in \mathbb{F}^k \mid P_1(\mathbf{x}) = \cdots = P_n(\mathbf{x}) = 0, \quad Q_1(\mathbf{x}) \neq 0, \dots, Q_m(\mathbf{x}) \neq 0\}.$ <u>Step 2.</u> Compute point count  $\#X(\mathbb{F}_q)$  over  $\mathbb{F}_q$ . <u>Step 3.</u> Compute Poincaré polynomial  $\mathcal{P}(X(\mathbb{C}); t) := \sum_i t^{\frac{i}{2}} \dim H^i(X(\mathbb{C})).$ <u>Step 4.</u> Compute the mixed Hodge polynomial  $\mathcal{P}(X; q, t)$ [Deligne splitting / weight filtration  $\rightarrow$  canonical second grading on  $H^*(X)$ ]

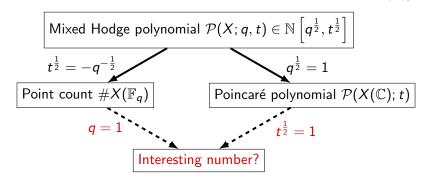
Mixed Hodge polynomial  $\mathcal{P}(X; q, t) \in \mathbb{N}\left[q^{\frac{1}{2}}, t^{\frac{1}{2}}\right]$ 

Point count  $\#X(\mathbb{F}_q)$ 

<u>Step 1.</u> Choose a variety [of "Hodge–Tate type"]  $X(\mathbb{F}) = \{\mathbf{x} \in \mathbb{F}^k \mid P_1(\mathbf{x}) = \cdots = P_n(\mathbf{x}) = 0, \quad Q_1(\mathbf{x}) \neq 0, \dots, Q_m(\mathbf{x}) \neq 0\}.$ <u>Step 2.</u> Compute point count  $\#X(\mathbb{F}_q)$  over  $\mathbb{F}_q$ . <u>Step 3.</u> Compute Poincaré polynomial  $\mathcal{P}(X(\mathbb{C}); t) := \sum_i t^{\frac{i}{2}} \dim H^i(X(\mathbb{C})).$ <u>Step 4.</u> Compute the mixed Hodge polynomial  $\mathcal{P}(X; q, t)$ [Deligne splitting / weight filtration  $\rightarrow$  canonical second grading on  $H^*(X)$ ]



<u>Step 1.</u> Choose a variety [of "Hodge–Tate type"]  $X(\mathbb{F}) = \{\mathbf{x} \in \mathbb{F}^k \mid P_1(\mathbf{x}) = \cdots = P_n(\mathbf{x}) = 0, \quad Q_1(\mathbf{x}) \neq 0, \dots, Q_m(\mathbf{x}) \neq 0\}.$ <u>Step 2.</u> Compute point count  $\#X(\mathbb{F}_q)$  over  $\mathbb{F}_q$ . <u>Step 3.</u> Compute Poincaré polynomial  $\mathcal{P}(X(\mathbb{C}); t) := \sum_i t^{\frac{i}{2}} \dim H^i(X(\mathbb{C})).$ <u>Step 4.</u> Compute the mixed Hodge polynomial  $\mathcal{P}(X; q, t)$ [Deligne splitting / weight filtration  $\rightarrow$  canonical second grading on  $H^*(X)$ ]



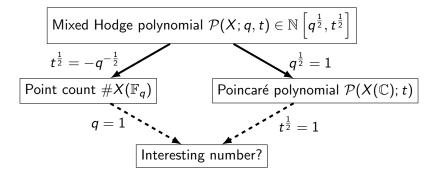
Step 1. Choose a variety [of "Hodge-Tate type"]

 $X(\mathbb{F}) = \{\mathbf{x} \in \mathbb{F}^k \mid P_1(\mathbf{x}) = \cdots = P_n(\mathbf{x}) = 0, \quad Q_1(\mathbf{x}) \neq 0, \ldots, Q_m(\mathbf{x}) \neq 0\}.$ 

<u>Step 2.</u> Compute point count  $\#X(\mathbb{F}_q)$  over  $\mathbb{F}_q$ .

Step 3. Compute Poincaré polynomial  $\mathcal{P}(X(\mathbb{C}); t) := \sum_{i} t^{\frac{i}{2}} \dim H^{i}(X(\mathbb{C})).$ Step 4. Compute the mixed Hodge polynomial  $\mathcal{P}(X; q, t)$ 

[Deligne splitting / weight filtration  $\rightarrow$  canonical second grading on  $H^*(X)$ ]



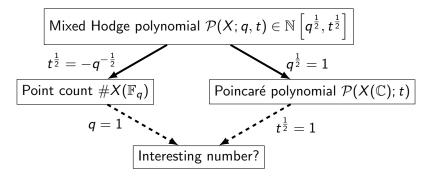
Step 1. Choose a variety [of "Hodge-Tate type"]

 $X(\mathbb{F}) = \{\mathbf{x} \in \mathbb{F}^k \mid P_1(\mathbf{x}) = \cdots = P_n(\mathbf{x}) = 0, \quad Q_1(\mathbf{x}) \neq 0, \ldots, Q_m(\mathbf{x}) \neq 0\}.$ 

<u>Step 2.</u> Compute point count  $\#X(\mathbb{F}_q)$  over  $\mathbb{F}_q$ .

Step 3. Compute Poincaré polynomial  $\mathcal{P}(X(\mathbb{C}); t) := \sum_{i} t^{\frac{i}{2}} \dim H^{i}(X(\mathbb{C})).$ Step 4. Compute the mixed Hodge polynomial  $\mathcal{P}(X; q, t)$ 

[Deligne splitting / weight filtration  $\rightarrow$  canonical second grading on  $H^*(X)$ ]



The diagram commutes when  $\mathcal{P}(X; q, t) \in \mathbb{N}[q, t]$  (i.e., odd cohomology vanishes).

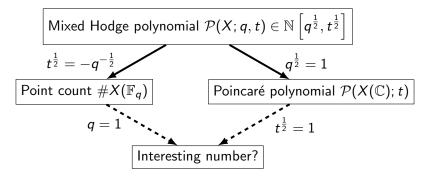
Step 1. Choose a variety [of "Hodge-Tate type"]

 $X(\mathbb{F}) = \{\mathbf{x} \in \mathbb{F}^k \mid P_1(\mathbf{x}) = \cdots = P_n(\mathbf{x}) = 0, \quad Q_1(\mathbf{x}) \neq 0, \ldots, Q_m(\mathbf{x}) \neq 0\}.$ 

<u>Step 2.</u> Compute point count  $\#X(\mathbb{F}_q)$  over  $\mathbb{F}_q$ .

Step 3. Compute Poincaré polynomial  $\mathcal{P}(X(\mathbb{C}); t) := \sum_{i} t^{\frac{1}{2}} \dim H^{i}(X(\mathbb{C})).$ Step 4. Compute the mixed Hodge polynomial  $\mathcal{P}(X; q, t)$ 

[Deligne splitting / weight filtration  $\rightarrow$  canonical second grading on  $H^*(X)$ ]



The diagram commutes when  $\mathcal{P}(X; q, t) \in \mathbb{N}[q, t]$  (i.e., odd cohomology vanishes). Question: Which variety should we choose?

$$Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid dim(V) = k\}$$

$$Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid dim(V) = k\}$$

• How many points in  $Gr(k, n; \mathbb{F}_q)$ ?

$$Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid \dim(V) = k\}$$

- How many points in  $Gr(k, n; \mathbb{F}_q)$ ?
- What is the Poincaré polynomial of  $Gr(k, n; \mathbb{C})$ ?

$$Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid \dim(V) = k\}$$

- How many points in  $Gr(k, n; \mathbb{F}_q)$ ?
- What is the Poincaré polynomial of  $Gr(k, n; \mathbb{C})$ ?

$$[n]_q := 1 + q + \dots + q^{n-1}, \quad [n]_q! := [1]_q[2]_q \cdots [n]_q$$

$$Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid \dim(V) = k\}$$

- How many points in  $Gr(k, n; \mathbb{F}_q)$ ?
- What is the Poincaré polynomial of  $Gr(k, n; \mathbb{C})$ ?

$$[n]_q := 1 + q + \dots + q^{n-1}, \quad [n]_q! := [1]_q[2]_q \dots [n]_q$$
$$\begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{[n]_q!}{[k]_q! [n-k]_q!}$$

$$Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid \dim(V) = k\}$$

- How many points in  $Gr(k, n; \mathbb{F}_q)$ ?
- What is the Poincaré polynomial of  $Gr(k, n; \mathbb{C})$ ?

$$[n]_q := 1 + q + \dots + q^{n-1}, \quad [n]_q! := [1]_q[2]_q \dots [n]_q$$
 $\begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{[n]_q!}{[k]_q! [n-k]_q!} = \sum_{\lambda \subseteq k \times (n-k)} q^{|\lambda|}.$ 

$$Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid \dim(V) = k\}$$

- How many points in  $Gr(k, n; \mathbb{F}_q)$ ?
- What is the Poincaré polynomial of Gr(k, n; C)?

$$[n]_q := 1 + q + \dots + q^{n-1}, \quad [n]_q! := [1]_q[2]_q \dots [n]_q$$
$$\binom{n}{k}_q := \frac{[n]_q!}{[k]_q! [n-k]_q!} = \sum_{\lambda \subseteq k \times (n-k)} q^{|\lambda|}.$$

• Point count:

$$\#\operatorname{Gr}(k,n;\mathbb{F}_q) = \begin{bmatrix} n \\ k \end{bmatrix}_q.$$

$$Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid dim(V) = k\}$$

- How many points in  $Gr(k, n; \mathbb{F}_q)$ ?
- What is the Poincaré polynomial of  $Gr(k, n; \mathbb{C})$ ?

$$[n]_q := 1 + q + \dots + q^{n-1}, \quad [n]_q! := [1]_q[2]_q \dots [n]_q$$
$$\binom{n}{k}_q := \frac{[n]_q!}{[k]_q! [n-k]_q!} = \sum_{\lambda \subseteq k \times (n-k)} q^{|\lambda|}.$$

• Point count:  $\# \operatorname{Gr}(k, n; \mathbb{F}_q) = \begin{bmatrix} n \\ k \end{bmatrix}_q^n$ 

Poincaré polynomial: 
$$\sum_{i} t^{\frac{i}{2}} \dim H^{i}(Gr(k, n; \mathbb{C})) = \begin{bmatrix} n \\ k \end{bmatrix}_{t}$$

$$Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid dim(V) = k\}$$

- How many points in  $Gr(k, n; \mathbb{F}_q)$ ?
- What is the Poincaré polynomial of Gr(k, n; ℂ)?

$$[n]_q := 1 + q + \dots + q^{n-1}, \quad [n]_q! := [1]_q[2]_q \dots [n]_q$$
 $\begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{[n]_q!}{[k]_q![n-k]_q!} = \sum_{\lambda \subseteq k \times (n-k)} q^{|\lambda|}.$ 

• Point count: 
$$\# \operatorname{Gr}(k, n; \mathbb{F}_q) = \begin{bmatrix} n \\ k \end{bmatrix}_q$$

Poincaré polynomial: \$\sum\_{i}^{k} t^{\frac{i}{2}} \dim H^{i}(Gr(k, n; \mathbb{C})) = \begin{bmatrix} n \\ k \end{bmatrix}\_{t}.
 Lame reason: Schubert decomposition.

 $Gr(k, n; \mathbb{F}) := \{ V \subseteq \mathbb{F}^n \mid \dim(V) = k \}$  $[n]_q := 1 + q + \dots + q^{n-1}, \quad [n]_q! := [1]_q[2]_q \cdots [n]_q$  $\binom{n}{k}_q := \frac{[n]_q!}{[k]_q![n-k]_q!} = \sum_{\lambda \subseteq k \times (n-k)} q^{|\lambda|}.$ 

• Point count: 
$$\# \operatorname{Gr}(k, n; \mathbb{F}_q) = \begin{bmatrix} n \\ k \end{bmatrix}_q$$

- Poincaré polynomial:  $\sum_{i} t^{\frac{i}{2}} \dim H^{i}(Gr(k, n; \mathbb{C})) = \begin{bmatrix} n \\ k \end{bmatrix}_{t}$ .
- Lame reason: Schubert decomposition.

 $Gr(k, n; \mathbb{F}) := \{ V \subseteq \mathbb{F}^n \mid \dim(V) = k \}$  $[n]_q := 1 + q + \dots + q^{n-1}, \quad [n]_q! := [1]_q[2]_q \dots [n]_q$  $\binom{n}{k}_q := \frac{[n]_q!}{[k]_q! [n-k]_q!} = \sum_{\lambda \subseteq k \times (n-k)} q^{|\lambda|}.$ 

• Point count: 
$$\# \operatorname{Gr}(k, n; \mathbb{F}_q) = \begin{bmatrix} n \\ k \end{bmatrix}_q$$

- Poincaré polynomial:  $\sum_{i} t^{\frac{i}{2}} \dim H^{i}(Gr(k, n; \mathbb{C})) = \begin{bmatrix} n \\ k \end{bmatrix}_{t}$ .
- Lame reason: Schubert decomposition.
- <u>Cool reason</u>: Mixed Hodge structure is pure, i.e., the mixed Hodge polynomial P(Gr(k, n); q, t) contains no new information.

 $Gr(k, n; \mathbb{F}) := \{ V \subseteq \mathbb{F}^n \mid \dim(V) = k \}$  $[n]_q := 1 + q + \dots + q^{n-1}, \quad [n]_q! := [1]_q[2]_q \dots [n]_q$  $\binom{n}{k}_q := \frac{[n]_q!}{[k]_q! [n-k]_q!} = \sum_{\lambda \subseteq k \times (n-k)} q^{|\lambda|}.$ 

• Point count: 
$$\# \operatorname{Gr}(k, n; \mathbb{F}_q) = \begin{bmatrix} n \\ k \end{bmatrix}_q$$

- Poincaré polynomial:  $\sum_{i} t^{\frac{i}{2}} \dim H^{i}(Gr(k, n; \mathbb{C})) = \begin{bmatrix} n \\ k \end{bmatrix}_{t}$ .
- Lame reason: Schubert decomposition.
- <u>Cool reason</u>: Mixed Hodge structure is pure, i.e., the mixed Hodge polynomial P(Gr(k, n); q, t) contains no new information.
- Interesting number:  $\binom{n}{k}$ .

$$C_{k,n-k} := \frac{1}{n} \binom{n}{k}.$$

$$C_{k,n-k} := \frac{1}{n} \binom{n}{k}$$

$$C_{k,n-k} := \frac{1}{n} \binom{n}{k}.$$

• Counts the number of Dyck paths inside a  $k \times (n - k)$  rectangle.

$$C_{k,n-k} := \frac{1}{n} \binom{n}{k} = \# \operatorname{Dyck}_{k,n-k}$$

$$C_{k,n-k} := \frac{1}{n} \binom{n}{k}.$$



$$C_{k,n-k} := \frac{1}{n} \binom{n}{k} = \# \operatorname{Dyck}_{k,n-k}$$

$$C_{k,n-k} := \frac{1}{n} \binom{n}{k}.$$



$$C'_{k,n-k}(q) := \frac{1}{[n]_q} {n \brack k}_q$$

$$q = 1$$

$$C_{k,n-k} := \frac{1}{n} {n \choose k} = \# \operatorname{Dyck}_{k,n-k}$$

$$C_{k,n-k} := \frac{1}{n} \binom{n}{k}.$$

• Counts the number of Dyck paths inside a  $k \times (n - k)$  rectangle. Example: k = 3, n = 8,  $C_{k,n-k} = 7$ :



 $C'_{k,n-k}(q) = q^8 + q^6 + q^5 + q^4 + q^3 + q^2 + 1.$ 

$$C'_{k,n-k}(q) := \frac{1}{[n]_q} {n \brack k}_q$$

$$q = 1$$

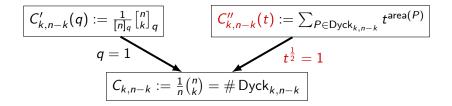
$$C_{k,n-k} := \frac{1}{n} {n \choose k} = \# \operatorname{Dyck}_{k,n-k}$$

$$C_{k,n-k} := \frac{1}{n} \binom{n}{k}.$$

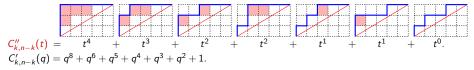
• Counts the number of Dyck paths inside a  $k \times (n - k)$  rectangle. Example: k = 3, n = 8,  $C_{k,n-k} = 7$ :



 $C_{k,n-k}'(q) = q^8 + q^6 + q^5 + q^4 + q^3 + q^2 + 1.$ 



$$C_{k,n-k} := \frac{1}{n} \binom{n}{k}.$$



$$C'_{k,n-k}(q) := \frac{1}{[n]_q} \begin{bmatrix} n \\ k \end{bmatrix}_q$$

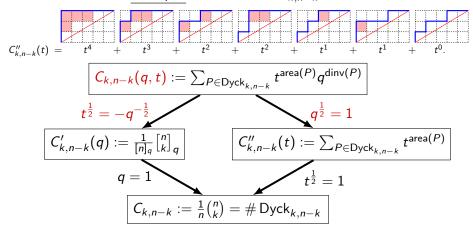
$$q = 1$$

$$C''_{k,n-k}(t) := \sum_{P \in \mathsf{Dyck}_{k,n-k}} t^{\mathsf{area}(P)}$$

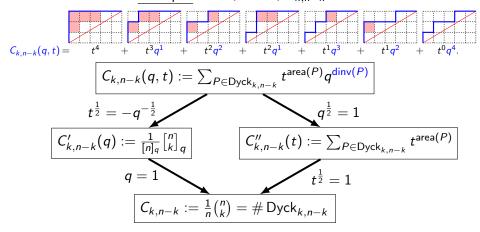
$$t^{\frac{1}{2}} = 1$$

$$C_{k,n-k} := \frac{1}{n} {n \choose k} = \# \mathsf{Dyck}_{k,n-k}$$

$$C_{k,n-k} := \frac{1}{n} \binom{n}{k}.$$



$$C_{k,n-k} := \frac{1}{n} \binom{n}{k}.$$



# The Catalan variety

#### $Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid dim(V) = k\}$

### The Catalan variety

 $\mathsf{Gr}(k,n;\mathbb{F}) := \{ V \subseteq \mathbb{F}^n \mid \mathsf{dim}(V) = k \} = \frac{\{k \times n \text{ matrices of rank } k\}}{(\mathsf{row operations})}.$ 

# The Catalan variety

 $Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid dim(V) = k\} = \frac{\{k \times n \text{ matrices of rank } k\}}{(row operations)}.$ 

For I of size k, let  $\Delta_I(V)$  be the maximal minor of V with column set I.

# The Catalan variety

$$\mathsf{Gr}(k,n;\mathbb{F}) := \{ V \subseteq \mathbb{F}^n \mid \mathsf{dim}(V) = k \} = \frac{\{k \times n \text{ matrices of rank } k\}}{(\mathsf{row operations})}$$

For I of size k, let  $\Delta_I(V)$  be the maximal minor of V with column set I.

## Definition (G.-Lam (2020))

Let gcd(k, n) = 1. The Catalan variety is given by

$$\mathsf{X}^{\circ}_{k,n} := \{ V \in \mathrm{Gr}(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}.$$

# The Catalan variety

$$\mathsf{Gr}(k,n;\mathbb{F}) := \{ V \subseteq \mathbb{F}^n \mid \mathsf{dim}(V) = k \} = \frac{\{k \times n \text{ matrices of rank } k\}}{(\mathsf{row operations})}$$

For I of size k, let  $\Delta_I(V)$  be the maximal minor of V with column set I.

## Definition (G.-Lam (2020))

Let gcd(k, n) = 1. The Catalan variety is given by

$$X_{k,n}^{\circ} := \{ V \in Gr(k, n) \mid \Delta_{1,...,k}(V) = \Delta_{2,...,k+1}(V) = \cdots = \Delta_{n,1,...,k-1}(V) = 1 \}.$$

#### Example:

$$\overline{X_{2,5}^{\circ}} = \left\{ \text{RowSpan} \begin{pmatrix} 1 & 0 & a & b & c \\ 0 & 1 & d & e & f \end{pmatrix} \middle| \begin{array}{c} -a = 1, & ae - bd = 1, \\ f = 1, & bf - ce = 1 \end{array} \right\}$$

Let gcd(k, n) = 1. The Catalan variety is given by

$$X_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}.$$

#### Example:

$$\overline{X_{2,5}^{\circ}} = \left\{ \mathsf{RowSpan} \begin{pmatrix} 1 & 0 & a & b & c \\ 0 & 1 & d & e & f \end{pmatrix} \middle| \begin{array}{c} -a = 1, & ae - bd = 1, \\ f = 1, & bf - ce = 1 \end{array} \right\}.$$

Let gcd(k, n) = 1. The Catalan variety is given by

$$X_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}.$$

Example:

$$\overline{X_{2,5}^{\circ}} = \left\{ \text{RowSpan} \begin{pmatrix} 1 & 0 & a & b & c \\ 0 & 1 & d & e & f \end{pmatrix} \middle| \begin{array}{c} -a = 1, & ae - bd = 1, \\ f = 1, & bf - ce = 1 \end{array} \right\}.$$

# Theorem (G.-Lam (2020))

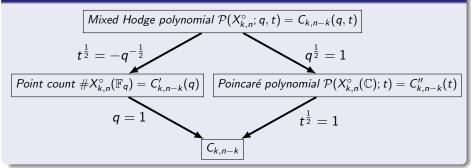
Let gcd(k, n) = 1. The Catalan variety is given by

$$X_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}.$$

Example:

$$\overline{X_{2,5}^{\circ}} = \left\{ \text{RowSpan} \begin{pmatrix} 1 & 0 & a & b & c \\ 0 & 1 & d & e & f \end{pmatrix} \middle| \begin{array}{c} -a = 1, & ae - bd = 1, \\ f = 1, & bf - ce = 1 \end{array} \right\}.$$

## Theorem (G.–Lam (2020))



Let gcd(k, n) = 1. The Catalan variety is given by

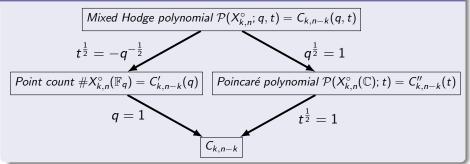
$$X_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}.$$

Example:

$$\overline{X_{2,5}^{\circ}} = \left\{ \text{RowSpan} \begin{pmatrix} 1 & 0 & a & b & c \\ 0 & 1 & d & e & f \end{pmatrix} \middle| \begin{array}{c} -a = 1, & ae - bd = 1, \\ f = 1, & bf - ce = 1 \end{array} \right\}.$$

 $\#X_{2,5}^{\circ}(\mathbb{F}_q) = q^2 + 1, \quad \mathcal{P}(X_{2,5}^{\circ}(\mathbb{C});t) = 1 + t, \quad \mathcal{P}(X_{2,5}^{\circ};q,t) = q + t.$ 

Theorem (G.–Lam (2020))



Let gcd(k, n) = 1. The Catalan variety is given by

## $X_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}.$

Let gcd(k, n) = 1. The Catalan variety is given by

$$X_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}.$$

## Definition (Knutson–Lam–Speyer (2013))

For arbitrary  $k \leq n$ , the top open positroid variety is given by  $\Pi_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V), \Delta_{2,\dots,k+1}(V), \dots, \Delta_{n,1,\dots,k-1}(V) \neq 0 \}.$ 

Let gcd(k, n) = 1. The Catalan variety is given by

$$X_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}.$$

#### Definition (Knutson–Lam–Speyer (2013))

For arbitrary  $k \leq n$ , the top open positroid variety is given by  $\Pi_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V), \Delta_{2,\dots,k+1}(V), \cdots, \Delta_{n,1,\dots,k-1}(V) \neq 0 \}.$ 

The torus  $T \cong (\mathbb{C}^*)^{n-1}$  of diagonal matrices acts on Gr(k, n) by column rescaling.

Let gcd(k, n) = 1. The Catalan variety is given by

$$X_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}.$$

## Definition (Knutson–Lam–Speyer (2013))

For arbitrary  $k \leq n$ , the top open positroid variety is given by  $\Pi_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V), \Delta_{2,\dots,k+1}(V), \cdots, \Delta_{n,1,\dots,k-1}(V) \neq 0 \}.$ 

The torus  $T \cong (\mathbb{C}^*)^{n-1}$  of diagonal matrices acts on Gr(k, n) by column rescaling.

#### Lemma

The T-action on  $\Pi_{k,n}^{\circ}$  is free whenever gcd(k,n) = 1. In this case,  $\Pi_{k,n}^{\circ}/T \cong X_{k,n}^{\circ}$  and  $\Pi_{k,n}^{\circ} \cong X_{k,n}^{\circ} \times T$ .

Let gcd(k, n) = 1. The Catalan variety is given by

$$X_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}.$$

## Definition (Knutson–Lam–Speyer (2013))

For arbitrary  $k \leq n$ , the top open positroid variety is given by  $\Pi_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V), \Delta_{2,\dots,k+1}(V), \cdots, \Delta_{n,1,\dots,k-1}(V) \neq 0 \}.$ 

The torus  $T \cong (\mathbb{C}^*)^{n-1}$  of diagonal matrices acts on Gr(k, n) by column rescaling.

#### Lemma

The *T*-action on  $\Pi_{k,n}^{\circ}$  is free whenever gcd(k,n) = 1. In this case,  $\Pi_{k,n}^{\circ}/T \cong X_{k,n}^{\circ}$  and  $\Pi_{k,n}^{\circ} \cong X_{k,n}^{\circ} \times T$ .

$$\operatorname{gcd}(k,n) = 1 \quad \Longrightarrow \quad \mathcal{P}(\prod_{k,n}^{\circ};q,t) = \left(q^{\frac{1}{2}} + t^{\frac{1}{2}}\right)^{n-1} \mathcal{P}(X_{k,n}^{\circ};q,t),$$

Let gcd(k, n) = 1. The Catalan variety is given by

$$X_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}.$$

## Definition (Knutson–Lam–Speyer (2013))

For arbitrary  $k \leq n$ , the top open positroid variety is given by  $\Pi_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V), \Delta_{2,\dots,k+1}(V), \cdots, \Delta_{n,1,\dots,k-1}(V) \neq 0 \}.$ 

The torus  $T \cong (\mathbb{C}^*)^{n-1}$  of diagonal matrices acts on Gr(k, n) by column rescaling.

#### Lemma

The *T*-action on  $\Pi_{k,n}^{\circ}$  is free whenever gcd(k,n) = 1. In this case,  $\Pi_{k,n}^{\circ}/T \cong X_{k,n}^{\circ}$  and  $\Pi_{k,n}^{\circ} \cong X_{k,n}^{\circ} \times T$ .

$$gcd(k,n) = 1 \implies \mathcal{P}(\Pi_{k,n}^{\circ};q,t) = \left(q^{\frac{1}{2}} + t^{\frac{1}{2}}\right)^{n-1} \mathcal{P}(X_{k,n}^{\circ};q,t),$$
$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \# X_{k,n}^{\circ}(\mathbb{F}_q),$$

Let gcd(k, n) = 1. The Catalan variety is given by

$$X_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}$$

## Definition (Knutson–Lam–Speyer (2013))

For arbitrary  $k \leq n$ , the top open positroid variety is given by  $\Pi_{k,n}^{\circ} := \{ V \in Gr(k,n) \mid \Delta_{1,\dots,k}(V), \Delta_{2,\dots,k+1}(V), \cdots, \Delta_{n,1,\dots,k-1}(V) \neq 0 \}.$ 

The torus  $T \cong (\mathbb{C}^*)^{n-1}$  of diagonal matrices acts on Gr(k, n) by column rescaling.

#### Lemma

The T-action on  $\prod_{k,n}^{\circ}$  is free whenever gcd(k, n) = 1. In this case,  $\prod_{k,n}^{\circ} / T \simeq X^{\circ}$  and  $\prod_{k,n}^{\circ} \simeq X^{\circ} \simeq T$ 

$$\Pi_{k,n}^{\circ}/T\cong X_{k,n}^{\circ}$$
 and  $\Pi_{k,n}^{\circ}\cong X_{k,n}^{\circ} imes T.$ 

$$gcd(k,n) = 1 \implies \mathcal{P}(\Pi_{k,n}^{\circ};q,t) = \left(q^{\frac{1}{2}} + t^{\frac{1}{2}}\right)^{n-1} \mathcal{P}(X_{k,n}^{\circ};q,t),$$
  
$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \# X_{k,n}^{\circ}(\mathbb{F}_q), \quad \mathcal{P}(\Pi_{k,n}^{\circ}(\mathbb{C});t) = \left(1 + t^{\frac{1}{2}}\right)^{n-1} \mathcal{P}(X_{k,n}^{\circ}(\mathbb{C});t).$$

$$\begin{split} X_{k,n}^{\circ} &:= \{ V \in \mathsf{Gr}(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}.\\ \Pi_{k,n}^{\circ} &:= \{ V \in \mathsf{Gr}(k,n) \mid \Delta_{1,\dots,k}(V), \Delta_{2,\dots,k+1}(V), \dots, \Delta_{n,1,\dots,k-1}(V) \neq 0 \}.\\ \gcd(k,n) &= 1 \implies \Pi_{k,n}^{\circ} \cong X_{k,n}^{\circ} \times T, \text{ where } T \cong (\mathbb{C}^*)^{n-1}. \end{split}$$

$$gcd(k,n) = 1 \implies \mathcal{P}(\Pi_{k,n}^{\circ};q,t) = \left(q^{\frac{1}{2}} + t^{\frac{1}{2}}\right)^{n-1} \mathcal{P}(X_{k,n}^{\circ};q,t),$$
  
$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \# X_{k,n}^{\circ}(\mathbb{F}_q), \quad \mathcal{P}(\Pi_{k,n}^{\circ}(\mathbb{C});t) = \left(1 + t^{\frac{1}{2}}\right)^{n-1} \mathcal{P}(X_{k,n}^{\circ}(\mathbb{C});t).$$

$$\begin{split} X_{k,n}^{\circ} &:= \{ V \in \mathsf{Gr}(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}.\\ \Pi_{k,n}^{\circ} &:= \{ V \in \mathsf{Gr}(k,n) \mid \Delta_{1,\dots,k}(V), \Delta_{2,\dots,k+1}(V), \dots, \Delta_{n,1,\dots,k-1}(V) \neq 0 \}.\\ \gcd(k,n) &= 1 \implies \Pi_{k,n}^{\circ} \cong X_{k,n}^{\circ} \times T, \text{ where } T \cong (\mathbb{C}^*)^{n-1}. \end{split}$$

$$gcd(k,n) = 1 \implies \mathcal{P}(\Pi_{k,n}^{\circ};q,t) = \left(q^{\frac{1}{2}} + t^{\frac{1}{2}}\right)^{n-1} \mathcal{P}(X_{k,n}^{\circ};q,t),$$

$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \#X_{k,n}^{\circ}(\mathbb{F}_q), \quad \mathcal{P}(\Pi_{k,n}^{\circ}(\mathbb{C});t) = \left(1 + t^{\frac{1}{2}}\right)^{n-1} \mathcal{P}(X_{k,n}^{\circ}(\mathbb{C});t).$$
Recall: 
$$\#X_{k,n}^{\circ}(\mathbb{F}_q) = C'_{k,n-k}(q) = \frac{1}{[n]_q} {n \brack k}_q \text{ and } \#\operatorname{Gr}(k,n;\mathbb{F}_q) = {n \brack k}_q.$$

$$\begin{split} X_{k,n}^{\circ} &:= \{ V \in \mathsf{Gr}(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}.\\ \Pi_{k,n}^{\circ} &:= \{ V \in \mathsf{Gr}(k,n) \mid \Delta_{1,\dots,k}(V), \Delta_{2,\dots,k+1}(V), \dots, \Delta_{n,1,\dots,k-1}(V) \neq 0 \}.\\ \mathsf{gcd}(k,n) &= 1 \implies \Pi_{k,n}^{\circ} \cong X_{k,n}^{\circ} \times T, \text{ where } T \cong (\mathbb{C}^*)^{n-1}. \end{split}$$

$$gcd(k,n) = 1 \implies \mathcal{P}(\Pi_{k,n}^{\circ};q,t) = \left(q^{\frac{1}{2}} + t^{\frac{1}{2}}\right)^{n-1} \mathcal{P}(X_{k,n}^{\circ};q,t),$$

$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \#X_{k,n}^{\circ}(\mathbb{F}_q), \quad \mathcal{P}(\Pi_{k,n}^{\circ}(\mathbb{C});t) = \left(1 + t^{\frac{1}{2}}\right)^{n-1} \mathcal{P}(X_{k,n}^{\circ}(\mathbb{C});t).$$
Recall: 
$$\#X_{k,n}^{\circ}(\mathbb{F}_q) = C'_{k,n-k}(q) = \frac{1}{[n]_q} {n \brack k}_q \text{ and } \#\operatorname{Gr}(k,n;\mathbb{F}_q) = {n \brack k}_q.$$

#### Corollary

Let gcd(k, n) = 1. Then a uniformly random point of  $Gr(k, n; \mathbb{F}_q)$  belongs to  $\Pi_{k,n}^{\circ}(\mathbb{F}_q)$  with probability  $\frac{(q-1)^n}{q^n-1}$ .

$$\begin{split} X_{k,n}^{\circ} &:= \{ V \in \mathsf{Gr}(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}. \\ \Pi_{k,n}^{\circ} &:= \{ V \in \mathsf{Gr}(k,n) \mid \Delta_{1,\dots,k}(V), \Delta_{2,\dots,k+1}(V), \dots, \Delta_{n,1,\dots,k-1}(V) \neq 0 \}. \\ \mathsf{gcd}(k,n) &= 1 \implies \Pi_{k,n}^{\circ} \cong X_{k,n}^{\circ} \times T, \text{ where } T \cong (\mathbb{C}^*)^{n-1}. \end{split}$$

$$gcd(k,n) = 1 \implies \mathcal{P}(\Pi_{k,n}^{\circ};q,t) = \left(q^{\frac{1}{2}} + t^{\frac{1}{2}}\right)^{n-1} \mathcal{P}(X_{k,n}^{\circ};q,t),$$

$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \#X_{k,n}^{\circ}(\mathbb{F}_q), \quad \mathcal{P}(\Pi_{k,n}^{\circ}(\mathbb{C});t) = \left(1 + t^{\frac{1}{2}}\right)^{n-1} \mathcal{P}(X_{k,n}^{\circ}(\mathbb{C});t).$$
Recall: 
$$\#X_{k,n}^{\circ}(\mathbb{F}_q) = C'_{k,n-k}(q) = \frac{1}{[n]_q} {n \brack k}_q \text{ and } \#\operatorname{Gr}(k,n;\mathbb{F}_q) = {n \brack k}_q.$$

#### Corollary

Let gcd(k, n) = 1. Then a uniformly random point of  $Gr(k, n; \mathbb{F}_q)$  belongs to  $\Pi_{k,n}^{\circ}(\mathbb{F}_q)$  with probability  $\frac{(q-1)^n}{q^n-1}$ .  $\leftarrow$  does not depend on k?!

$$\begin{split} X_{k,n}^{\circ} &:= \{ V \in \mathsf{Gr}(k,n) \mid \Delta_{1,\dots,k}(V) = \Delta_{2,\dots,k+1}(V) = \dots = \Delta_{n,1,\dots,k-1}(V) = 1 \}.\\ \Pi_{k,n}^{\circ} &:= \{ V \in \mathsf{Gr}(k,n) \mid \Delta_{1,\dots,k}(V), \Delta_{2,\dots,k+1}(V), \dots, \Delta_{n,1,\dots,k-1}(V) \neq 0 \}.\\ \mathsf{gcd}(k,n) &= 1 \implies \Pi_{k,n}^{\circ} \cong X_{k,n}^{\circ} \times T, \text{ where } T \cong (\mathbb{C}^*)^{n-1}. \end{split}$$

$$gcd(k,n) = 1 \implies \mathcal{P}(\Pi_{k,n}^{\circ};q,t) = \left(q^{\frac{1}{2}} + t^{\frac{1}{2}}\right)^{n-1} \mathcal{P}(X_{k,n}^{\circ};q,t),$$

$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \#X_{k,n}^{\circ}(\mathbb{F}_q), \quad \mathcal{P}(\Pi_{k,n}^{\circ}(\mathbb{C});t) = \left(1 + t^{\frac{1}{2}}\right)^{n-1} \mathcal{P}(X_{k,n}^{\circ}(\mathbb{C});t).$$
Recall: 
$$\#X_{k,n}^{\circ}(\mathbb{F}_q) = C'_{k,n-k}(q) = \frac{1}{[n]_q} {n \brack k}_q \text{ and } \#\operatorname{Gr}(k,n;\mathbb{F}_q) = {n \brack k}_q.$$

#### Corollary

Let gcd(k, n) = 1. Then a uniformly random point of  $Gr(k, n; \mathbb{F}_q)$  belongs to  $\Pi_{k,n}^{\circ}(\mathbb{F}_q)$  with probability  $\frac{(q-1)^n}{q^n-1}$ .  $\leftarrow$  does not depend on k?!

## **Open Problem**

Prove this directly (without using knot theory).

$$\mathsf{Gr}(k,n;\mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid \mathsf{dim}(V) = k\} = \frac{\{k \times n \text{ matrices of rank } k\}}{(\mathsf{row operations})}.$$

 $Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid \dim(V) = k\} = \frac{\{k \times n \text{ matrices of rank } k\}}{(\text{row operations})}.$ Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}.$  [Knutson-Lam-Speyer '13], [Postnikov '06]

 $\operatorname{Gr}(k, n; \mathbb{F}) := \{ V \subseteq \mathbb{F}^n \mid \dim(V) = k \} = \frac{\{k \times n \text{ matrices of rank } k\}}{(\operatorname{row operations})}.$   $\operatorname{Positroid stratification: } \operatorname{Gr}(k, n) = \bigsqcup_{f} \Pi_f^{\circ}. \quad [\operatorname{Knutson-Lam-Speyer '13}], \text{ [Postnikov '06]}$ 

• Let M be a full rank  $k \times n$  matrix with columns  $M_1, M_2, \ldots, M_n$ .

 $Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid \dim(V) = k\} = \frac{\{k \times n \text{ matrices of rank } k\}}{(\text{row operations})}.$ Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}.$  [Knutson-Lam-Speyer '13], [Postnikov '06]

- Let M be a full rank  $k \times n$  matrix with columns  $M_1, M_2, \ldots, M_n$ .
- Extend this labeling periodically to  $(M_i)_{i \in \mathbb{Z}}$  by setting  $M_{i+n} := M_i$ .

 $Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid \dim(V) = k\} = \frac{\{k \times n \text{ matrices of rank } k\}}{(\text{row operations})}.$ Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}.$  [Knutson-Lam-Speyer '13], [Postnikov '06]

- Let M be a full rank  $k \times n$  matrix with columns  $M_1, M_2, \ldots, M_n$ .
- Extend this labeling periodically to  $(M_i)_{i \in \mathbb{Z}}$  by setting  $M_{i+n} := M_i$ .
- Let  $f_M: \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$  be given by

 $f_{\mathcal{M}}(i) \equiv \min\{j \ge i \mid M_i \in \operatorname{Span}(M_{i+1}, \dots, M_j)\} \pmod{n}.$ 

 $Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid \dim(V) = k\} = \frac{\{k \times n \text{ matrices of rank } k\}}{(\text{row operations})}.$ Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}.$  [Knutson-Lam-Speyer '13], [Postnikov '06]

- Let M be a full rank  $k \times n$  matrix with columns  $M_1, M_2, \ldots, M_n$ .
- Extend this labeling periodically to  $(M_i)_{i \in \mathbb{Z}}$  by setting  $M_{i+n} := M_i$ .
- Let  $f_M: \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$  be given by

$$f_{\mathcal{M}}(i) \equiv \min\{j \ge i \mid M_i \in \operatorname{Span}(M_{i+1}, \dots, M_j)\} \pmod{n}$$

• Turns out *f<sub>M</sub>* is always a permutation!

 $Gr(k, n; \mathbb{F}) := \{ V \subseteq \mathbb{F}^n \mid \dim(V) = k \} = \frac{\{k \times n \text{ matrices of rank } k\}}{(\text{row operations})}.$ Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}.$  [Knutson-Lam-Speyer '13], [Postnikov '06]

- Let M be a full rank  $k \times n$  matrix with columns  $M_1, M_2, \ldots, M_n$ .
- Extend this labeling periodically to  $(M_i)_{i \in \mathbb{Z}}$  by setting  $M_{i+n} := M_i$ .
- Let  $f_M : \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$  be given by

$$f_{\mathcal{M}}(i) \equiv \min\{j \ge i \mid M_i \in \operatorname{Span}(M_{i+1}, \dots, M_j)\} \pmod{n}$$

- Turns out *f<sub>M</sub>* is always a permutation!
- For an arbitrary permutation  $f \in S_n$ , let

$$\Pi_f^{\circ} := \{ \mathsf{RowSpan}(M) \in \mathsf{Gr}(k, n) \mid f_M = f \}.$$

 $Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid \dim(V) = k\} = \frac{\{k \times n \text{ matrices of rank } k\}}{(\text{row operations})}.$ Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}.$  [Knutson-Lam-Speyer '13], [Postnikov '06]

- Let M be a full rank  $k \times n$  matrix with columns  $M_1, M_2, \ldots, M_n$ .
- Extend this labeling periodically to  $(M_i)_{i \in \mathbb{Z}}$  by setting  $M_{i+n} := M_i$ .
- Let  $f_M: \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$  be given by

$$f_{\mathcal{M}}(i) \equiv \min\{j \ge i \mid M_i \in \operatorname{Span}(M_{i+1}, \dots, M_j)\} \pmod{n}$$

- Turns out *f<sub>M</sub>* is always a permutation!
- For an arbitrary permutation  $f \in S_n$ , let

$$\Pi_f^\circ := \{\mathsf{RowSpan}(M) \in \mathsf{Gr}(k,n) \mid f_M = f\}.$$

• Let  $f_{k,n} \in S_n$  be given by  $f_{k,n}(i) \equiv i + k \pmod{n}$  for all i. Then

$$\Pi^{\circ}_{f_{k,n}} = \Pi^{\circ}_{k,n}.$$

 $Gr(k, n; \mathbb{F}) := \{V \subseteq \mathbb{F}^n \mid \dim(V) = k\} = \frac{\{k \times n \text{ matrices of rank } k\}}{(\text{row operations})}.$ Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}.$  [Knutson-Lam-Speyer '13], [Postnikov '06]

- Let M be a full rank  $k \times n$  matrix with columns  $M_1, M_2, \ldots, M_n$ .
- Extend this labeling periodically to  $(M_i)_{i \in \mathbb{Z}}$  by setting  $M_{i+n} := M_i$ .
- Let  $f_M: \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$  be given by

$$f_{\mathcal{M}}(i) \equiv \min\{j \ge i \mid M_i \in \operatorname{Span}(M_{i+1}, \dots, M_j)\} \pmod{n}$$

- Turns out *f<sub>M</sub>* is always a permutation!
- For an arbitrary permutation  $f \in S_n$ , let

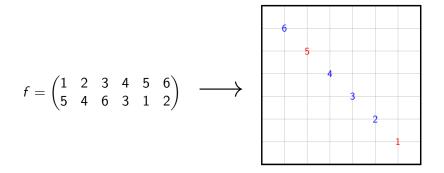
$$\Pi_f^\circ := \{\mathsf{RowSpan}(M) \in \mathsf{Gr}(k,n) \mid f_M = f\}.$$

• Let  $f_{k,n} \in S_n$  be given by  $f_{k,n}(i) \equiv i + k \pmod{n}$  for all i. Then  $\Pi_{f_{k,n}}^{\circ} = \Pi_{k,n}^{\circ}.$ 

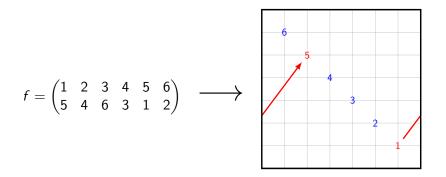
• Point count? Poincaré polynomial?  $\mathcal{P}(\Pi_f^\circ; q, t) = ?$ 

# Positroid stratification: $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}$ , where each f is a permutation.

Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ} \Pi_{f}^{\circ}$ , where each f is a permutation. Associate a link  $L_{f}$  (on a torus) to each permutation  $f \in S_{n}$  as follows:

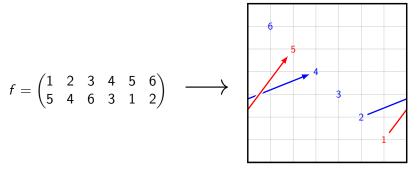


Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}$ , where each f is a permutation. Associate a link  $L_f$  (on a torus) to each permutation  $f \in S_n$  as follows: • Draw an arrow  $i \to f(i)$  in the NE direction for each i = 1, 2, ..., n.



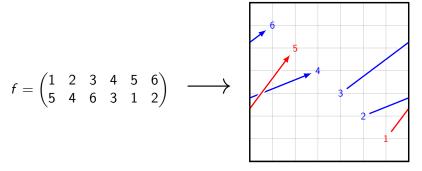
Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}$ , where each f is a permutation.

- Draw an arrow  $i \to f(i)$  in the NE direction for each i = 1, 2, ..., n.
- Arrows with higher slope go above arrows with lower slope.



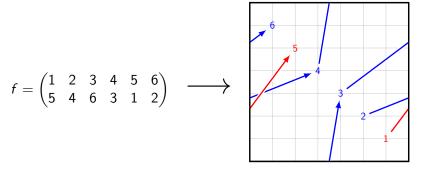
Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}$ , where each f is a permutation.

- Draw an arrow  $i \to f(i)$  in the NE direction for each i = 1, 2, ..., n.
- Arrows with higher slope go above arrows with lower slope.



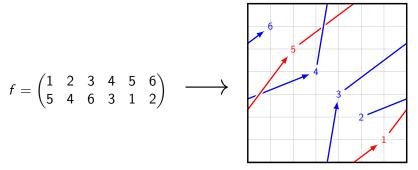
Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}$ , where each f is a permutation.

- Draw an arrow  $i \to f(i)$  in the NE direction for each i = 1, 2, ..., n.
- Arrows with higher slope go above arrows with lower slope.



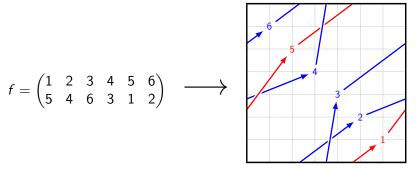
Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}$ , where each f is a permutation.

- Draw an arrow  $i \to f(i)$  in the NE direction for each i = 1, 2, ..., n.
- Arrows with higher slope go above arrows with lower slope.



Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}$ , where each f is a permutation.

- Draw an arrow  $i \to f(i)$  in the NE direction for each i = 1, 2, ..., n.
- Arrows with higher slope go above arrows with lower slope.

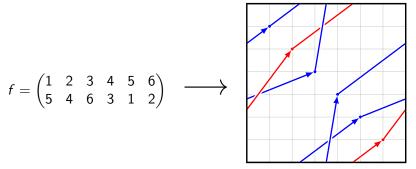


# Positroid links

Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}$ , where each f is a permutation.

Associate a link  $L_f$  (on a torus) to each permutation  $f \in S_n$  as follows:

- Draw an arrow  $i \to f(i)$  in the NE direction for each i = 1, 2, ..., n.
- Arrows with higher slope go above arrows with lower slope.

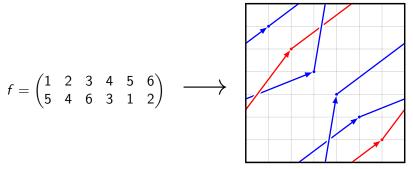


# Positroid links

Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}$ , where each f is a permutation.

Associate a link  $L_f$  (on a torus) to each permutation  $f \in S_n$  as follows:

- Draw an arrow  $i \to f(i)$  in the NE direction for each i = 1, 2, ..., n.
- Arrows with higher slope go above arrows with lower slope.



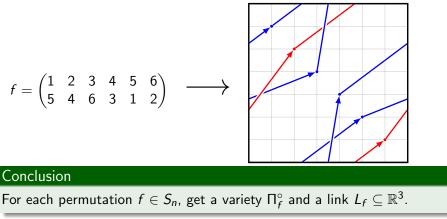
This construction: [G.-Lam '22+]. Related constructions: [G.-Lam '20], [Shende-Treumann-Williams-Zaslow '15], [Fomin-Pylyavskyy-Shustin-Thurston '17], [Casals-Gorsky-Gorsky-Simental '21]

# Positroid links

Positroid stratification:  $Gr(k, n) = \bigsqcup_{f} \prod_{f}^{\circ}$ , where each f is a permutation.

Associate a link  $L_f$  (on a torus) to each permutation  $f \in S_n$  as follows:

- Draw an arrow  $i \to f(i)$  in the NE direction for each i = 1, 2, ..., n.
- Arrows with higher slope go above arrows with lower slope.



Given a link *L*, the HOMFLY polynomial P(L; a, q) is defined by  $P(\bigcirc) = 1$  and

Given a link *L*, the HOMFLY polynomial P(L; a, q) is defined by  $P(\bigcirc) = 1$  and  $aP(L_+) - a^{-1}P(L_-) = \left(q^{\frac{1}{2}} - q^{-\frac{1}{2}}\right)P(L_0)$ 

Given a link *L*, the HOMFLY polynomial 
$$P(L; a, q)$$
 is defined by  
 $P(\bigcirc) = 1$  and  $aP(L_+) - a^{-1}P(L_-) = \left(q^{\frac{1}{2}} - q^{-\frac{1}{2}}\right)P(L_0)$ , where  
 $\bigvee_{L_+} \bigvee_{L_-} \bigvee_{L_0} \bigvee_{L_0}$ 

Given a link *L*, the HOMFLY polynomial P(L; a, q) is defined by  $P(\bigcirc) = 1$  and  $aP(L_+) - a^{-1}P(L_-) = \left(q^{\frac{1}{2}} - q^{-\frac{1}{2}}\right)P(L_0)$ , where  $\bigotimes_{L_+} \bigotimes_{L_-} \bigotimes_{L_0} \bigvee_{L_0}$ 

## Theorem (G.–Lam (2020))

Let  $f \in S_n$ . Then the point count of  $\Pi_f^{\circ}$  is given by

 $\#\Pi_{f}^{\circ}(\mathbb{F}_{q}) = (q-1)^{n-1} \cdot (top \ a\text{-degree coefficient of } P(L_{f}; a, q)).$ 

Given a link *L*, the HOMFLY polynomial P(L; a, q) is defined by  $P(\bigcirc) = 1$  and  $aP(L_+) - a^{-1}P(L_-) = \left(q^{\frac{1}{2}} - q^{-\frac{1}{2}}\right)P(L_0)$ , where  $\bigotimes_{L_+} \bigotimes_{L_-} \bigotimes_{L_0}$ 

### Theorem (G.–Lam (2020))

Let  $f \in S_n$ . Then the point count of  $\Pi_f^{\circ}$  is given by  $\#\Pi_f^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \cdot (\text{top a-degree coefficient of } P(L_f; a, q)).$ 

**Lemma:** T acts freely on  $\Pi_f^{\circ} \iff f$  is a single cycle  $\iff L_f$  is a knot.

Given a link *L*, the HOMFLY polynomial P(L; a, q) is defined by  $P(\bigcirc) = 1$  and  $aP(L_+) - a^{-1}P(L_-) = \left(q^{\frac{1}{2}} - q^{-\frac{1}{2}}\right)P(L_0)$ , where  $\bigotimes_{L_+} \bigotimes_{L_-} \bigotimes_{L_0} \bigotimes_{L_0}$ 

### Theorem (G.–Lam (2020))

Let  $f \in S_n$ . Then the point count of  $\Pi_f^{\circ}$  is given by  $\#\Pi_f^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \cdot (top \ a\text{-degree coefficient of } P(L_f; a, q)).$ 

**Lemma:** T acts freely on  $\Pi_f^{\circ} \iff f$  is a single cycle  $\iff L_f$  is a knot.

Khovanov–Rozansky link homology yields a polynomial  $\mathcal{P}_{KR}(L; a, q, t)$  which specializes to the HOMFLY polynomial P(L; a, q).

Given a link *L*, the HOMFLY polynomial P(L; a, q) is defined by  $P(\bigcirc) = 1$  and  $aP(L_+) - a^{-1}P(L_-) = \left(q^{\frac{1}{2}} - q^{-\frac{1}{2}}\right)P(L_0)$ , where  $\bigotimes_{L_+} \bigotimes_{L_-} \bigotimes_{L_0} \bigotimes_{L_0}$ 

## Theorem (G.–Lam (2020))

Let  $f \in S_n$ . Then the point count of  $\Pi_f^{\circ}$  is given by  $\#\Pi_f^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \cdot (top \ a\text{-degree coefficient of } P(L_f; a, q)).$ 

**Lemma:** T acts freely on  $\Pi_f^{\circ} \iff f$  is a single cycle  $\iff L_f$  is a knot.

Khovanov–Rozansky link homology yields a polynomial  $\mathcal{P}_{KR}(L; a, q, t)$  which specializes to the HOMFLY polynomial P(L; a, q).

Theorem (G.-Lam (2020))

Let  $f \in S_n$  be a single cycle. Then

 $\mathcal{P}(\prod_{f}^{\circ}/T; q, t) = top \ a-degree \ coefficient \ of \ \mathcal{P}_{\mathsf{KR}}(L_{f}; a, q, t).$ 

Given a link *L*, the HOMFLY polynomial P(L; a, q) is defined by  $P(\bigcirc) = 1$  and  $aP(L_+) - a^{-1}P(L_-) = \left(q^{\frac{1}{2}} - q^{-\frac{1}{2}}\right)P(L_0)$ , where  $\bigotimes_{L_+} \bigotimes_{L_-} \bigotimes_{L_0} \bigotimes_{L_0}$ 

## Theorem (G.-Lam (2020))

Let  $f \in S_n$ . Then the point count of  $\Pi_f^{\circ}$  is given by  $\#\Pi_f^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \cdot (top \ a\text{-degree coefficient of } P(L_f; a, q)).$ 

**Lemma:** T acts freely on  $\Pi_f^{\circ} \iff f$  is a single cycle  $\iff L_f$  is a knot.

Khovanov–Rozansky link homology yields a polynomial  $\mathcal{P}_{KR}(L; a, q, t)$  which specializes to the HOMFLY polynomial P(L; a, q).

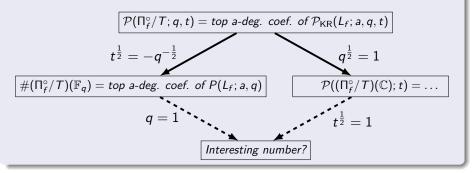
Theorem (G.-Lam (2020))

Let  $f \in S_n$  be a single cycle. Then

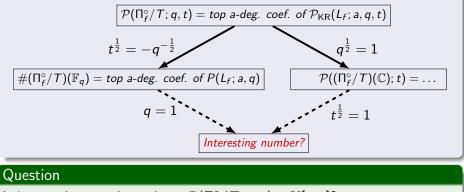
 $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) = top \text{ a-degree coefficient of } \mathcal{P}_{\mathsf{KR}}(L_{f}; a, q, t).$ 

Arbitrary  $f \in S_n$ : LHS = *T*-equivariant cohomology of  $\Pi_f^{\circ}$  with compact support.

Let  $f \in S_n$  be a single cycle.

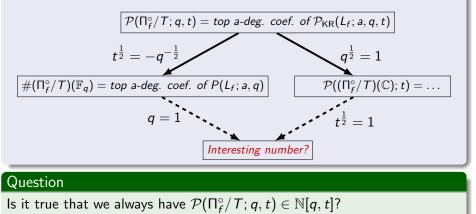


Let  $f \in S_n$  be a single cycle.



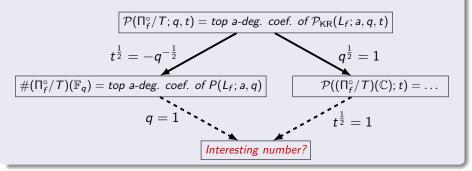
Is it true that we always have  $\mathcal{P}(\Pi_f^\circ/T; q, t) \in \mathbb{N}[q, t]$ ?

Let  $f \in S_n$  be a single cycle.



<u>A:</u> No. Smallest known counterexample is a single cycle in  $S_{14}$ .

Let  $f \in S_n$  be a single cycle.



#### Question

Is it true that we always have  $\mathcal{P}(\Pi_f^\circ/T;q,t)\in\mathbb{N}[q,t]?$ 

<u>A:</u> No. Smallest known counterexample is a single cycle in  $S_{14}$ .

### Problem

Find a class of permutations for which  $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

### Find a class of permutations for which $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

Find a class of permutations for which  $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

Find a class of permutations for which  $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

## Definition (G.-Lam (2021))

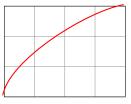
• Draw a generic concave curve C from (0,0) to (n-k,k).



Find a class of permutations for which  $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

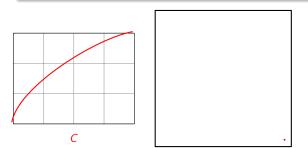
## Definition (G.-Lam (2021))

• Draw a generic concave curve C from (0,0) to (n-k,k).



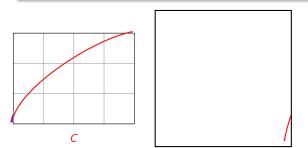
Find a class of permutations for which  $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

- Draw a generic concave curve C from (0,0) to (n-k,k).
- Project it to the unit square.



Find a class of permutations for which  $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

- Draw a generic concave curve C from (0,0) to (n-k,k).
- Project it to the unit square.



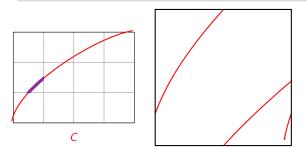
Find a class of permutations for which  $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

- Draw a generic concave curve C from (0,0) to (n-k,k).
- Project it to the unit square.



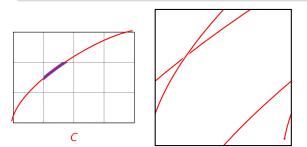
Find a class of permutations for which  $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

- Draw a generic concave curve C from (0,0) to (n-k,k).
- Project it to the unit square.



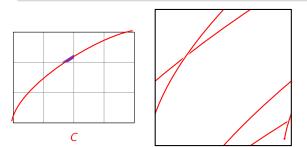
Find a class of permutations for which  $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

- Draw a generic concave curve C from (0,0) to (n-k,k).
- Project it to the unit square.
- Segments of higher slope are drawn above segments of lower slope.



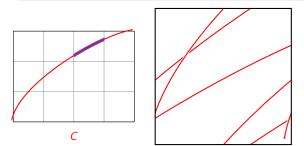
Find a class of permutations for which  $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

- Draw a generic concave curve C from (0,0) to (n-k,k).
- Project it to the unit square.
- Segments of higher slope are drawn above segments of lower slope.



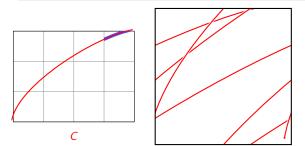
Find a class of permutations for which  $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

- Draw a generic concave curve C from (0,0) to (n-k,k).
- Project it to the unit square.
- Segments of higher slope are drawn above segments of lower slope.



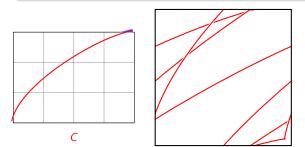
Find a class of permutations for which  $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

- Draw a generic concave curve C from (0,0) to (n-k,k).
- Project it to the unit square.
- Segments of higher slope are drawn above segments of lower slope.



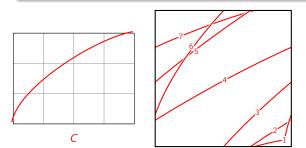
Find a class of permutations for which  $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

- Draw a generic concave curve C from (0,0) to (n-k,k).
- Project it to the unit square.
- Segments of higher slope are drawn above segments of lower slope.



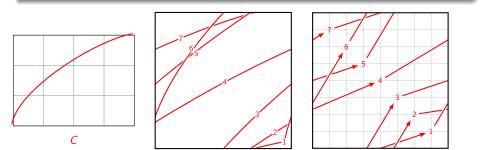
Find a class of permutations for which  $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

- Draw a generic concave curve C from (0,0) to (n-k,k).
- Project it to the unit square.
- Segments of higher slope are drawn above segments of lower slope.
- The result is a positroid link (knot)  $L_f$ , where  $f \in S_n$  is a single cycle.



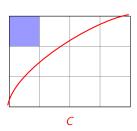
Find a class of permutations for which  $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

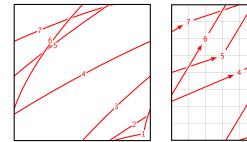
- Draw a generic concave curve C from (0,0) to (n-k,k).
- Project it to the unit square.
- Segments of higher slope are drawn above segments of lower slope.
- The result is a positroid link (knot)  $L_f$ , where  $f \in S_n$  is a single cycle.



Find a class of permutations for which  $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t) \in \mathbb{N}[q, t]$ . Interesting numbers?

- Draw a generic concave curve C from (0,0) to (n-k,k).
- Project it to the unit square.
- Segments of higher slope are drawn above segments of lower slope.
- The result is a positroid link (knot)  $L_f$ , where  $f \in S_n$  is a single cycle.
- The knot L<sub>f</sub> depends only on the Young diagram above C.





### Theorem (G.–Lam (2021))

The q = 1 evaluation of  $\#(\Pi_f^{\circ}/T)(\mathbb{F}_q)$  equals the number  $\# \operatorname{Dyck}_C$  of Dyck paths that stay above C.

$$\frac{\#(\Pi_{f}^{\circ}/T)(\mathbb{F}_{q}) = \sum_{P \in \mathsf{Dyck}_{C}} q^{???}}{q = 1}$$

$$\frac{\#\mathsf{Dyck}_{C}}{\#\mathsf{Dyck}_{C}}$$

### Theorem (G.–Lam (2021))

The q = 1 evaluation of  $\#(\prod_{f}^{\circ}/T)(\mathbb{F}_{q})$  equals the number  $\# \operatorname{Dyck}_{C}$  of Dyck paths that stay above C.

## Conjecture (G.-Lam (2021))

• 
$$\mathcal{P}((\Pi_f^{\circ}/T)(\mathbb{C}); t) = \sum_{P \in \mathsf{Dyck}_C} t^{\mathsf{area}(P)}.$$

### Theorem (G.–Lam (2021))

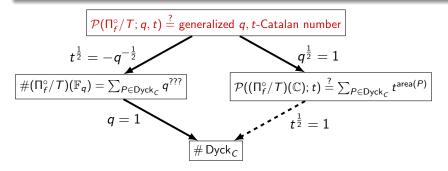
The q = 1 evaluation of  $\#(\Pi_f^{\circ}/T)(\mathbb{F}_q)$  equals the number # Dyck<sub>C</sub> of Dyck paths that stay above C.

## Conjecture (G.-Lam (2021))

• 
$$\mathcal{P}((\Pi_f^{\circ}/T)(\mathbb{C}); t) = \sum_{P \in \mathsf{Dyck}_C} t^{\mathsf{area}(P)}$$
.

•  $\mathcal{P}(\prod_{f}^{\circ}/T; q, t)$  is the generalized q, t-Catalan number studied by

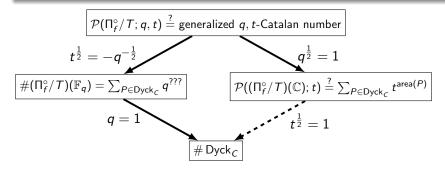
[Gorsky-Negut-Rasmussen '16], [Oblomkov-Rozansky '17], [Gorsky-Hawkes-Schilling-Rainbolt '19]



# Conjecture (G.–Lam (2021))

- $\mathcal{P}((\Pi_f^{\circ}/T)(\mathbb{C}); t) = \sum_{P \in \mathsf{Dyck}_C} t^{\mathsf{area}(P)}$ .
- $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t)$  is the generalized q, t-Catalan number studied by

[Gorsky-Negut-Rasmussen '16], [Oblomkov-Rozansky '17], [Gorsky-Hawkes-Schilling-Rainbolt '19]

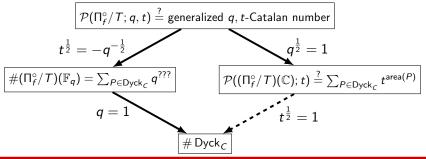


#### Let C be a concave curve and $f \in S_n$ the corresponding permutation.

# Conjecture (G.–Lam (2021))

- $\mathcal{P}((\Pi_f^{\circ}/T)(\mathbb{C}); t) = \sum_{P \in \mathsf{Dyck}_C} t^{\mathsf{area}(P)}.$
- $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t)$  is the generalized q, t-Catalan number studied by

[Gorsky-Negut-Rasmussen '16], [Oblomkov-Rozansky '17], [Gorsky-Hawkes-Schilling-Rainbolt '19]



### Open Problem

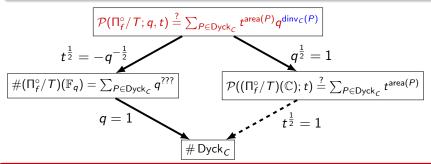
• Compute the point count  $\#(\Pi_f^{\circ}/T)(\mathbb{F}_q)$ .

#### Let C be a concave curve and $f \in S_n$ the corresponding permutation.

# Conjecture (G.–Lam (2021))

- $\mathcal{P}((\Pi_f^{\circ}/T)(\mathbb{C}); t) = \sum_{P \in \mathsf{Dyck}_C} t^{\mathsf{area}(P)}$ .
- $\mathcal{P}(\Pi_{f}^{\circ}/T; q, t)$  is the generalized q, t-Catalan number studied by

[Gorsky-Negut-Rasmussen '16], [Oblomkov-Rozansky '17], [Gorsky-Hawkes-Schilling-Rainbolt '19]



### **Open Problem**

- Compute the point count  $\#(\Pi_f^{\circ}/T)(\mathbb{F}_q)$ .
- Find a statistic dinv<sub>C</sub> such that  $\mathcal{P}(\Pi_f^{\circ}/T; q, t) = \sum_{P \in \mathsf{Dvck}_C} t^{\mathsf{area}(P)} q^{\mathsf{dinv}_C(P)}$ .

Quiver  $Q \longrightarrow$  cluster algebra  $\mathcal{A}(Q)$ . [Fomin–Zelevinsky '02]

Quiver  $Q \longrightarrow$  cluster algebra  $\mathcal{A}(Q)$ . [Fomin–Zelevinsky '02]

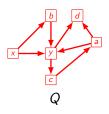
Definition (Muller (2013))

• If Q has no arrows then it is locally acyclic.

Quiver  $Q \longrightarrow$  cluster algebra  $\mathcal{A}(Q)$ . [Fomin–Zelevinsky '02]

### Definition (Muller (2013))

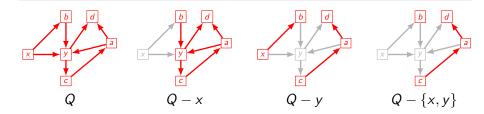
- If Q has no arrows then it is locally acyclic.
- Suppose that after some mutations, we have found an arrow  $x \to y$  in Q such that x has no incoming arrows from mutable vertices.\*



Quiver  $Q \longrightarrow$  cluster algebra  $\mathcal{A}(Q)$ . [Fomin–Zelevinsky '02]

### Definition (Muller (2013))

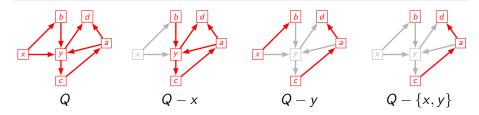
- If Q has no arrows then it is locally acyclic.
- Suppose that after some mutations, we have found an arrow  $x \to y$  in Q such that x has no incoming arrows from mutable vertices.\*
- Suppose that Q x, Q y, and  $Q \{x, y\}$  are locally acyclic.



#### Quiver $Q \longrightarrow$ cluster algebra $\mathcal{A}(Q)$ . [Fomin–Zelevinsky '02]

### Definition (Muller (2013))

- If Q has no arrows then it is locally acyclic.
- Suppose that after some mutations, we have found an arrow  $x \to y$  in Q such that x has no incoming arrows from mutable vertices.\*
- Suppose that Q x, Q y, and  $Q \{x, y\}$  are locally acyclic.
- Then Q is also locally acyclic.



#### Quiver $Q \longrightarrow$ cluster algebra $\mathcal{A}(Q)$ . [Fomin–Zelevinsky '02]

### Definition (Muller (2013))

- If Q has no arrows then it is locally acyclic.
- Suppose that after some mutations, we have found an arrow  $x \to y$  in Q such that x has no incoming arrows from mutable vertices.\*
- Suppose that Q x, Q y, and  $Q \{x, y\}$  are locally acyclic.
- Then Q is also locally acyclic.

#### Theorem (G.-Lam (2019) + Muller-Speyer (2016))

For any  $f \in S_n$ ,  $\Pi_f^{\circ}$  is a locally acyclic cluster variety.

#### Quiver $Q \longrightarrow$ cluster algebra $\mathcal{A}(Q)$ . [Fomin–Zelevinsky '02]

### Definition (Muller (2013))

- If Q has no arrows then it is locally acyclic.
- Suppose that after some mutations, we have found an arrow  $x \to y$  in Q such that x has no incoming arrows from mutable vertices.\*
- Suppose that Q x, Q y, and  $Q \{x, y\}$  are locally acyclic.
- Then Q is also locally acyclic.

#### Theorem (G.–Lam (2019) + Muller–Speyer (2016))

For any  $f \in S_n$ ,  $\Pi_f^{\circ}$  is a locally acyclic cluster variety. That is, the coordinate ring  $\mathbb{C}[\Pi_f^{\circ}]$  is a cluster algebra  $\mathcal{A}(Q)$ , where Q is locally acyclic.

#### Quiver $Q \longrightarrow$ cluster algebra $\mathcal{A}(Q)$ . [Fomin–Zelevinsky '02]

### Definition (Muller (2013))

- If Q has no arrows then it is locally acyclic.
- Suppose that after some mutations, we have found an arrow  $x \to y$  in Q such that x has no incoming arrows from mutable vertices.\*
- Suppose that Q x, Q y, and  $Q \{x, y\}$  are locally acyclic.
- Then Q is also locally acyclic.

#### Theorem (G.–Lam (2019) + Muller–Speyer (2016))

For any  $f \in S_n$ ,  $\Pi_f^{\circ}$  is a locally acyclic cluster variety. That is, the coordinate ring  $\mathbb{C}[\Pi_f^{\circ}]$  is a cluster algebra  $\mathcal{A}(Q)$ , where Q is locally acyclic.

[Muller-Speyer '16], [Serhiyenko-Sherman-Bennett-Williams '19], [Leclerc '16]

For any  $f \in S_n$ ,  $\Pi_f^{\circ}$  is a locally acyclic cluster variety. That is, the coordinate ring  $\mathbb{C}[\Pi_f^{\circ}]$  is a cluster algebra  $\mathcal{A}(Q)$ , where Q is locally acyclic.

[Muller-Speyer '16], [Serhiyenko-Sherman-Bennett-Williams '19], [Leclerc '16]

For any  $f \in S_n$ ,  $\Pi_f^{\circ}$  is a locally acyclic cluster variety. That is, the coordinate ring  $\mathbb{C}[\Pi_f^{\circ}]$  is a cluster algebra  $\mathcal{A}(Q)$ , where Q is locally acyclic.

[Muller-Speyer '16], [Serhiyenko-Sherman-Bennett-Williams '19], [Leclerc '16]

Theorem (Lam–Speyer (2016))

Suppose that X is a locally acyclic cluster variety. Then  $\mathcal{P}(X; q, t)$  is q, t-symmetric and q, t-unimodal.

For any  $f \in S_n$ ,  $\Pi_f^{\circ}$  is a locally acyclic cluster variety. That is, the coordinate ring  $\mathbb{C}[\Pi_f^{\circ}]$  is a cluster algebra  $\mathcal{A}(Q)$ , where Q is locally acyclic.

[Muller-Speyer '16], [Serhiyenko-Sherman-Bennett-Williams '19], [Leclerc '16]

Theorem (Lam-Speyer (2016))

Suppose that X is a locally acyclic cluster variety. Then  $\mathcal{P}(X; q, t)$  is q,t-symmetric and q,t-unimodal.

# Corollary (G.-Lam (2020))

If  $f \in S_n$  is a single cycle then  $\mathcal{P}(\prod_f^\circ/T; q, t)$  is q, t-symmetric and q, t-unimodal.

For any  $f \in S_n$ ,  $\Pi_f^{\circ}$  is a locally acyclic cluster variety. That is, the coordinate ring  $\mathbb{C}[\Pi_f^{\circ}]$  is a cluster algebra  $\mathcal{A}(Q)$ , where Q is locally acyclic.

[Muller-Speyer '16], [Serhiyenko-Sherman-Bennett-Williams '19], [Leclerc '16]

Theorem (Lam–Speyer (2016))

Suppose that X is a locally acyclic cluster variety. Then  $\mathcal{P}(X; q, t)$  is q,t-symmetric and q,t-unimodal.

# Corollary (G.-Lam (2020))

If  $f \in S_n$  is a single cycle then  $\mathcal{P}(\prod_f^{\circ}/T; q, t)$  is q, t-symmetric and q, t-unimodal.

In particular, for gcd(k, n) = 1, the rational q, t-Catalan numbers  $C_{k,n-k}(q, t)$  are q, t-symmetric and q, t-unimodal.

For any  $f \in S_n$ ,  $\Pi_f^{\circ}$  is a locally acyclic cluster variety. That is, the coordinate ring  $\mathbb{C}[\Pi_f^{\circ}]$  is a cluster algebra  $\mathcal{A}(Q)$ , where Q is locally acyclic.

[Muller-Speyer '16], [Serhiyenko-Sherman-Bennett-Williams '19], [Leclerc '16]

Theorem (Lam–Speyer (2016))

Suppose that X is a locally acyclic cluster variety. Then  $\mathcal{P}(X; q, t)$  is q,t-symmetric and q,t-unimodal.

### Corollary (G.-Lam (2020))

If  $f \in S_n$  is a single cycle then  $\mathcal{P}(\prod_f^\circ/T; q, t)$  is q, t-symmetric and q, t-unimodal.

In particular, for gcd(k, n) = 1, the rational q, t-Catalan numbers  $C_{k,n-k}(q, t)$  are q, t-symmetric and q, t-unimodal.

q, t-unimodality of  $C_{k,n-k}(q,t)$  was not previously known!

For any  $f \in S_n$ ,  $\Pi_f^{\circ}$  is a locally acyclic cluster variety. That is, the coordinate ring  $\mathbb{C}[\Pi_f^{\circ}]$  is a cluster algebra  $\mathcal{A}(Q)$ , where Q is locally acyclic.

[Muller-Speyer '16], [Serhiyenko-Sherman-Bennett-Williams '19], [Leclerc '16]

Theorem (Lam–Speyer (2016))

Suppose that X is a locally acyclic cluster variety. Then  $\mathcal{P}(X; q, t)$  is q,t-symmetric and q,t-unimodal.

### Corollary (G.-Lam (2020))

If  $f \in S_n$  is a single cycle then  $\mathcal{P}(\prod_f^\circ/T; q, t)$  is q, t-symmetric and q, t-unimodal.

In particular, for gcd(k, n) = 1, the rational q, t-Catalan numbers  $C_{k,n-k}(q, t)$  are q, t-symmetric and q, t-unimodal.

q, t-unimodality of  $C_{k,n-k}(q, t)$  was not previously known! [Haiman '94], [Haiman '02], [Mellit '16], [Carlsson-Mellit '18], [Gorsky-Hogancamp-Mellit '21]

For any  $f \in S_n$ ,  $\Pi_f^{\circ}$  is a locally acyclic cluster variety. That is, the coordinate ring  $\mathbb{C}[\Pi_f^{\circ}]$  is a cluster algebra  $\mathcal{A}(Q)$ , where Q is locally acyclic.

[Muller-Speyer '16], [Serhiyenko-Sherman-Bennett-Williams '19], [Leclerc '16]

Theorem (Lam–Speyer (2016))

Suppose that X is a locally acyclic cluster variety. Then  $\mathcal{P}(X; q, t)$  is q,t-symmetric and q,t-unimodal.

# Corollary (G.-Lam (2020))

If  $f \in S_n$  is a single cycle then  $\mathcal{P}(\prod_f^\circ/T; q, t)$  is q, t-symmetric and q, t-unimodal.

In particular, for gcd(k, n) = 1, the rational q, t-Catalan numbers  $C_{k,n-k}(q, t)$  are q, t-symmetric and q, t-unimodal.

For any  $f \in S_n$ ,  $\Pi_f^{\circ}$  is a locally acyclic cluster variety. That is, the coordinate ring  $\mathbb{C}[\Pi_f^{\circ}]$  is a cluster algebra  $\mathcal{A}(Q)$ , where Q is locally acyclic.

[Muller-Speyer '16], [Serhiyenko-Sherman-Bennett-Williams '19], [Leclerc '16]

Theorem (Lam–Speyer (2016))

Suppose that X is a locally acyclic cluster variety. Then  $\mathcal{P}(X; q, t)$  is q,t-symmetric and q,t-unimodal.

# Corollary (G.–Lam (2020))

If  $f \in S_n$  is a single cycle then  $\mathcal{P}(\prod_f^\circ/T; q, t)$  is q, t-symmetric and q, t-unimodal.

In particular, for gcd(k, n) = 1, the rational q, t-Catalan numbers  $C_{k,n-k}(q, t)$  are q, t-symmetric and q, t-unimodal.

#### Open Problem

Given a concave curve C, find a statistic dinv<sub>C</sub> such that  $\sum_{P \in Dyck_C} t^{area(P)}q^{dinv_C(P)}$  is q, t-symmetric and q, t-unimodal.

Let  $B, B_{-} \subseteq SL_{n}$  denote the sets of upper and lower triangular matrices.

Let  $B, B_{-} \subseteq SL_n$  denote the sets of upper and lower triangular matrices. Let  $v, w \in S_n$  be two permutations satisfying  $v \leq w$  in the Bruhat order.

Let  $B, B_{-} \subseteq SL_n$  denote the sets of upper and lower triangular matrices. Let  $v, w \in S_n$  be two permutations satisfying  $v \leq w$  in the Bruhat order. The open Richardson variety is

$$R_{v,w}^{\circ} := (B_{-}vB \cap BwB)/B \subseteq SL_n/B.$$

Let  $B, B_{-} \subseteq SL_n$  denote the sets of upper and lower triangular matrices. Let  $v, w \in S_n$  be two permutations satisfying  $v \leq w$  in the Bruhat order. The open Richardson variety is

$$R_{v,w}^{\circ} := (B_{-}vB \cap BwB)/B \subseteq SL_n/B.$$

#### Theorem (G.–Lam (2020))

Let  $v \leq w \in S_n$  be such that  $v^{-1}w$  is a single cycle. Then there is an explicit knot  $L_{v,w}$  such that

 $\mathcal{P}(R_{v,w}^{\circ}/T; q, t) = top \ a-degree \ coefficient \ of \ \mathcal{P}_{\mathsf{KR}}(L_{v,w}; a, q, t).$ 

Let  $B, B_{-} \subseteq SL_n$  denote the sets of upper and lower triangular matrices. Let  $v, w \in S_n$  be two permutations satisfying  $v \leq w$  in the Bruhat order. The open Richardson variety is

$$R_{v,w}^{\circ} := (B_{-}vB \cap BwB)/B \subseteq SL_n/B.$$

#### Theorem (G.–Lam (2020))

Let  $v \leq w \in S_n$  be such that  $v^{-1}w$  is a single cycle. Then there is an explicit knot  $L_{v,w}$  such that

 $\mathcal{P}(R_{v,w}^{\circ}/T; q, t) = top \ a\text{-degree coefficient of } \mathcal{P}_{\mathsf{KR}}(L_{v,w}; a, q, t).$ 

[Gorsky–Hogancamp–Mellit '21]:  $\mathcal{P}_{KR}(L_{v,w}; a, q, t)$  is q, t-symmetric and unimodal.

Let  $B, B_{-} \subseteq SL_n$  denote the sets of upper and lower triangular matrices. Let  $v, w \in S_n$  be two permutations satisfying  $v \leq w$  in the Bruhat order. The open Richardson variety is

$$R_{v,w}^{\circ} := (B_{-}vB \cap BwB)/B \subseteq SL_n/B.$$

#### Theorem (G.–Lam (2020))

Let  $v \leq w \in S_n$  be such that  $v^{-1}w$  is a single cycle. Then there is an explicit knot  $L_{v,w}$  such that

 $\mathcal{P}(R_{v,w}^{\circ}/T; q, t) = top \ a-degree \ coefficient \ of \ \mathcal{P}_{\mathsf{KR}}(L_{v,w}; a, q, t).$ 

[Gorsky–Hogancamp–Mellit '21]:  $\mathcal{P}_{KR}(L_{v,w}; a, q, t)$  is q, t-symmetric and unimodal.

Theorem (G.–Lam–Sherman-Bennett–Speyer (2022+))

 $R_{v,w}^{\circ}$  is a locally acyclic cluster variety.

Let  $B, B_{-} \subseteq SL_n$  denote the sets of upper and lower triangular matrices. Let  $v, w \in S_n$  be two permutations satisfying  $v \leq w$  in the Bruhat order. The open Richardson variety is

$$R_{v,w}^{\circ} := (B_{-}vB \cap BwB)/B \subseteq SL_n/B.$$

#### Theorem (G.–Lam (2020))

Let  $v \leq w \in S_n$  be such that  $v^{-1}w$  is a single cycle. Then there is an explicit knot  $L_{v,w}$  such that

 $\mathcal{P}(R_{v,w}^{\circ}/T; q, t) = top \ a-degree \ coefficient \ of \ \mathcal{P}_{\mathsf{KR}}(L_{v,w}; a, q, t).$ 

[Gorsky–Hogancamp–Mellit '21]:  $\mathcal{P}_{KR}(L_{v,w}; a, q, t)$  is q, t-symmetric and unimodal.

Theorem (G.–Lam–Sherman-Bennett–Speyer (2022+))

 $R_{v,w}^{\circ}$  is a locally acyclic cluster variety. Thus, when  $v^{-1}w$  is a single cycle,  $\mathcal{P}(R_{v,w}^{\circ}/T; q, t)$  is q, t-symmetric and unimodal.

Let  $B, B_{-} \subseteq SL_n$  denote the sets of upper and lower triangular matrices. Let  $v, w \in S_n$  be two permutations satisfying  $v \leq w$  in the Bruhat order. The open Richardson variety is

$$R_{v,w}^{\circ} := (B_{-}vB \cap BwB)/B \subseteq SL_n/B.$$

#### Theorem (G.-Lam (2020))

Let  $v \leq w \in S_n$  be such that  $v^{-1}w$  is a single cycle. Then there is an explicit knot  $L_{v,w}$  such that

 $\mathcal{P}(R_{v,w}^{\circ}/T; q, t) = top \ a-degree \ coefficient \ of \ \mathcal{P}_{\mathsf{KR}}(L_{v,w}; a, q, t).$ 

[Gorsky–Hogancamp–Mellit '21]:  $\mathcal{P}_{KR}(L_{v,w}; a, q, t)$  is q, t-symmetric and unimodal.

Theorem (G.–Lam–Sherman-Bennett–Speyer (2022+))

 $R_{v,w}^{\circ}$  is a locally acyclic cluster variety. Thus, when  $v^{-1}w$  is a single cycle,  $\mathcal{P}(R_{v,w}^{\circ}/T; q, t)$  is q, t-symmetric and unimodal.

Partial results: [Leclerc '16], [Ingermanson '19], [Ménard '22]

Let  $B, B_{-} \subseteq SL_n$  denote the sets of upper and lower triangular matrices. Let  $v, w \in S_n$  be two permutations satisfying  $v \leq w$  in the Bruhat order. The open Richardson variety is

$$R_{v,w}^{\circ} := (B_{-}vB \cap BwB)/B \subseteq SL_n/B.$$

#### Theorem (G.–Lam (2020))

Let  $v \leq w \in S_n$  be such that  $v^{-1}w$  is a single cycle. Then there is an explicit knot  $L_{v,w}$  such that

 $\mathcal{P}(R_{v,w}^{\circ}/T; q, t) = top \ a-degree \ coefficient \ of \ \mathcal{P}_{\mathsf{KR}}(L_{v,w}; a, q, t).$ 

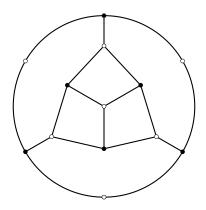
[Gorsky–Hogancamp–Mellit '21]:  $\mathcal{P}_{KR}(L_{v,w}; a, q, t)$  is q, t-symmetric and unimodal.

Theorem (G.–Lam–Sherman-Bennett–Speyer (2022+))

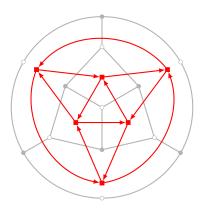
 $R_{v,w}^{\circ}$  is a locally acyclic cluster variety. Thus, when  $v^{-1}w$  is a single cycle,  $\mathcal{P}(R_{v,w}^{\circ}/T; q, t)$  is q, t-symmetric and unimodal.

Partial results: [Leclerc '16], [Ingermanson '19], [Ménard '22] Parallel work: [Casals–Gorsky–Gorsky–Le–Shen–Simental '22+]

Let G be a planar bicolored (plabic) graph in the plane.

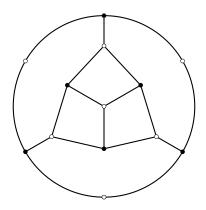


Let G be a planar bicolored (plabic) graph in the plane. The planar dual of G is a quiver  $Q_G$ .



Let G be a planar bicolored (plabic) graph in the plane. The planar dual of G is a quiver  $Q_G$ . One can also define a link  $L_G$ , as follows:

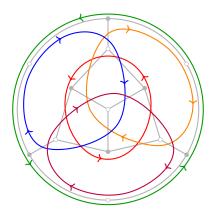
[Shende-Treumann-Williams-Zaslow '15], [Fomin-Pylyavskyy-Shustin-Thurston '17]



Let G be a planar bicolored (plabic) graph in the plane. The planar dual of G is a quiver  $Q_G$ . One can also define a link  $L_G$ , as follows:

[Shende-Treumann-Williams-Zaslow '15], [Fomin-Pylyavskyy-Shustin-Thurston '17]

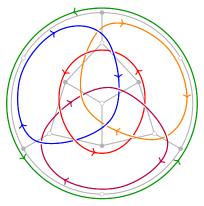
• Draw all strands, turning right (resp., left) at black (resp., white) vertices.



Let G be a planar bicolored (plabic) graph in the plane. The planar dual of G is a quiver  $Q_G$ . One can also define a link  $L_G$ , as follows:

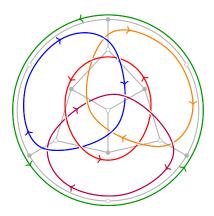
[Shende-Treumann-Williams-Zaslow '15], [Fomin-Pylyavskyy-Shustin-Thurston '17]

- Draw all strands, turning right (resp., left) at black (resp., white) vertices.
- At each crossing, the strand with higher complex argument of the tangent vector (in [0, 2π)) is drawn above the other one.



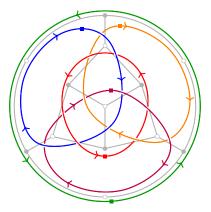
Let *G* be a planar bicolored (plabic) graph in the plane. The planar dual of *G* is a quiver  $Q_G$ . One can also define a link  $L_G$ , as follows: [Shende-Treumann-Williams-Zaslow '15], [Fomin-Pylyavskyy-Shustin-Thurston '17]

- Draw all strands, turning right (resp., left) at black (resp., white) vertices.
- At each crossing, the strand with higher complex argument of the tangent vector (in [0, 2π)) is drawn above the other one.



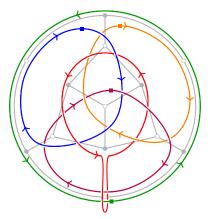
Let *G* be a planar bicolored (plabic) graph in the plane. The planar dual of *G* is a quiver  $Q_G$ . One can also define a link  $L_G$ , as follows: [Shende-Treumann-Williams-Zaslow '15], [Fomin-Pylyavskyy-Shustin-Thurston '17]

- Draw all strands, turning right (resp., left) at black (resp., white) vertices.
- At each crossing, the strand with higher complex argument of the tangent vector (in [0, 2π)) is drawn above the other one.
- When a strand changes the argument from 0 + ε to 2π − ε, it has to travel to the boundary below all other strands and then come back above all other strands.



Let *G* be a planar bicolored (plabic) graph in the plane. The planar dual of *G* is a quiver  $Q_G$ . One can also define a link  $L_G$ , as follows: [Shende-Treumann-Williams-Zaslow '15], [Fomin-Pylyavskyy-Shustin-Thurston '17]

- Draw all strands, turning right (resp., left) at black (resp., white) vertices.
- At each crossing, the strand with higher complex argument of the tangent vector (in [0, 2π)) is drawn above the other one.
- When a strand changes the argument from 0 + ε to 2π − ε, it has to travel to the boundary below all other strands and then come back above all other strands.



#### Conjecture (G.–Lam (2022+))

The  $\mathbb{F}_q$ -point count of the cluster variety Spec  $\mathcal{A}(Q_G)$  equals the top *a*-degree coefficient of the HOMFLY polynomial of  $L_G$ .

#### Conjecture (G.–Lam (2022+))

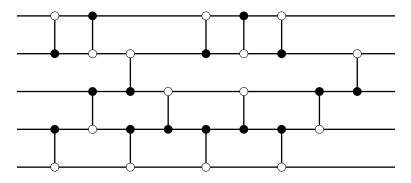
The  $\mathbb{F}_q$ -point count of the cluster variety Spec  $\mathcal{A}(Q_G)$  equals the top *a*-degree coefficient of the HOMFLY polynomial of  $L_G$ .

• When Q is locally acyclic, the  $\mathbb{F}_q$ -point count of Spec  $\mathcal{A}(Q_G)$  satisfies a simple recurrence, similar to the HOMFLY skein relation.

#### Conjecture (G.–Lam (2022+))

The  $\mathbb{F}_q$ -point count of the cluster variety Spec  $\mathcal{A}(Q_G)$  equals the top *a*-degree coefficient of the HOMFLY polynomial of  $L_G$ .

- When Q is locally acyclic, the  $\mathbb{F}_q$ -point count of Spec  $\mathcal{A}(Q_G)$  satisfies a simple recurrence, similar to the HOMFLY skein relation.
- We used this to prove the above conjecture for certain classes of plabic graphs, such as plabic fences.



#### Conjecture (G.–Lam (2022+))

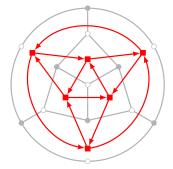
The  $\mathbb{F}_q$ -point count of the cluster variety Spec  $\mathcal{A}(Q_G)$  equals the top *a*-degree coefficient of the HOMFLY polynomial of  $L_G$ .

- When Q is locally acyclic, the  $\mathbb{F}_q$ -point count of Spec  $\mathcal{A}(Q_G)$  satisfies a simple recurrence, similar to the HOMFLY skein relation.
- We used this to prove the above conjecture for certain classes of plabic graphs, such as plabic fences.
- Unfortunately, not every plabic graph quiver  $Q_G$  is locally acyclic.

#### Conjecture (G.–Lam (2022+))

The  $\mathbb{F}_q$ -point count of the cluster variety Spec  $\mathcal{A}(Q_G)$  equals the top *a*-degree coefficient of the HOMFLY polynomial of  $L_G$ .

- When Q is locally acyclic, the  $\mathbb{F}_q$ -point count of Spec  $\mathcal{A}(Q_G)$  satisfies a simple recurrence, similar to the HOMFLY skein relation.
- We used this to prove the above conjecture for certain classes of plabic graphs, such as plabic fences.
- Unfortunately, not every plabic graph quiver  $Q_G$  is locally acyclic.



not locally acyclic!

#### Conjecture (G.–Lam (2022+))

The  $\mathbb{F}_q$ -point count of the cluster variety Spec  $\mathcal{A}(Q_G)$  equals the top *a*-degree coefficient of the HOMFLY polynomial of  $L_G$ .

- When Q is locally acyclic, the  $\mathbb{F}_q$ -point count of Spec  $\mathcal{A}(Q_G)$  satisfies a simple recurrence, similar to the HOMFLY skein relation.
- We used this to prove the above conjecture for certain classes of plabic graphs, such as plabic fences.
- Unfortunately, not every plabic graph quiver  $Q_G$  is locally acyclic.

#### Conjecture (G.–Lam (2022+))

The  $\mathbb{F}_q$ -point count of the cluster variety Spec  $\mathcal{A}(Q_G)$  equals the top *a*-degree coefficient of the HOMFLY polynomial of  $L_G$ .

- When Q is locally acyclic, the  $\mathbb{F}_q$ -point count of Spec  $\mathcal{A}(Q_G)$  satisfies a simple recurrence, similar to the HOMFLY skein relation.
- We used this to prove the above conjecture for certain classes of plabic graphs, such as plabic fences.
- Unfortunately, not every plabic graph quiver  $Q_G$  is locally acyclic.

#### **Open Problem**

Find a class of plabic graphs G for which  $Q_G$  is locally acyclic. Compute the corresponding  $\mathbb{F}_q$ -point counts, Poincaré polynomials, mixed Hodge polynomials, and "interesting numbers."

#### Conjecture (G.–Lam (2022+))

The  $\mathbb{F}_q$ -point count of the cluster variety Spec  $\mathcal{A}(Q_G)$  equals the top *a*-degree coefficient of the HOMFLY polynomial of  $L_G$ .

- When Q is locally acyclic, the  $\mathbb{F}_q$ -point count of Spec  $\mathcal{A}(Q_G)$  satisfies a simple recurrence, similar to the HOMFLY skein relation.
- We used this to prove the above conjecture for certain classes of plabic graphs, such as plabic fences.
- Unfortunately, not every plabic graph quiver  $Q_G$  is locally acyclic.

#### **Open Problem**

Find a class of plabic graphs G for which  $Q_G$  is locally acyclic. Compute the corresponding  $\mathbb{F}_q$ -point counts, Poincaré polynomials, mixed Hodge polynomials, and "interesting numbers."

# Thanks!