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Question: Which variety should we choose?
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#15,(Fq) = (a = 1" #X0,(F), P ,(C):0) = (14 6)" P(Xg,(©):0).

Recall: #X¢0(Fq) = Choni(@) = i, [kl g and # Gr(k, miFq) = [i] .

Let gcd(k, n) = 1. Then a uniformly random point of Gr(k, n;F) belongs
(g-1)"
n 1

to N} (Fq) with probability

<— does not depend on k?!
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I'Iiyn = {V S Gl’(k, n) | A17.“7k(\/), AZ,...,k+1(V)a ey An,l,‘..,k—l(v) 7é 0}
ged(k,n)=1 = Ty, 2X2, x T, where T (C*)"1

n—1
gcd(k,n) =1 — P(I'I;n; g,t) = (q% + t%> P(X,?’n; qg,t),
n—1
#015(Fq) = (9= 1) #X¢ ,(Fq),  P(M5,,(C)i8) = (1+1t2)" POXE,(C)i o).

Recall: #X¢,(Fq) = Ciopk(a) = i, [i] and  # Grlk, mFq) = [i].

Let gcd(k, n) = 1. Then a uniformly random point of Gr(k, n;F) belongs
to I}, ,(Fq) with probability (Z"_ 11 .

<— does not depend on k7!

Open Problem
Prove this directly (without using knot theory).
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Arbitrary positroid varieties

Gr(k, m F) = {V C " | dim(V) = K} {k x n matrices of rank k}

(row operations)
Positroid stratification: Gr(k, n) = |_| M%. [Knutson-Lam-Speyer '13], [Postnikov '06]
f

o Let M be a full rank k x n matrix with columns My, M5, ..., M,,.
@ Extend this labeling periodically to (M;);cz by setting My, :== M;.
Let Ay : {1,2,...,n} — {1,2,...,n} be given by

fm(i) = min{j > i | M; € Span(Mit1,...,M;)} (mod n).

Turns out fy is always a permutation!
For an arbitrary permutation f € S,, let

¢ = {RowSpan(M) € Gr(k,n) | f;y = f}.
Let fx , € S, be given by fi ,(i) =i+ k (mod n) for all i. Then

o _ Ao
fk,n - I_Ik,n’

@ Point count? Poincaré polynomial? P(M%; g, t) =7
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6
5
123456 > I
f= <5 4 6 3 1 2> 3
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Positroid links

Positroid stratification:  Gr(k, n) = |_| M%7, where each f is a permutation.

f
Associate a link L (on a torus) to each permutation f € S, as follows:
@ Draw an arrow i — (i) in the NE direction for each i =1,2,...,n.

@ Arrows with higher slope go above arrows with lower slope.

) — LA

&~ N
D W
w
= o1

[e)}

1
= (5

N

This construction: [G.—Lam '22+]. Related constructions: [G.—Lam '20],
[Shende—Treumann—-Williams—Zaslow '15], [Fomin—Pylyavskyy—Shustin—Thurston '17],
[Casals—Gorsky—Gorsky—Simental '21]



Positroid links

Positroid stratification:  Gr(k, n) = |_| M%7, where each f is a permutation.

f
Associate a link L (on a torus) to each permutation f € S, as follows:

@ Draw an arrow i — (i) in the NE direction for each i =1,2,...,n.
@ Arrows with higher slope go above arrows with lower slope.

R

For each permutation f € S, get a variety 12 and a link Lf C R3. \
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Given a link L, the HOMFLY polynomial P(L; a, g) is defined by
P(O)=1 and aP(Ly)—alP(L_)= (q% - q_%> P(Lp) , where

XXX

Ly L Lo

Theorem (G.—Lam (2020))

Let f € S,. Then the point count of 1% is given by
#N2(Fy) = (9 — 1) - (top a-degree coefficient of P(Ly; a, q)).

Lemma: T acts freely on 17 <= f is a single cycle <= L¢ is a knot.

Khovanov—Rozansky link homology yields a polynomial Pxr(L; a, g, t)
which specializes to the HOMFLY polynomial P(L; a, q).

Theorem (G.—Lam (2020))

Let f € S, be a single cycle. Then
P(N%/T;q,t) = top a-degree coefficient of Pxr(Ly; a, q, t).

Arbitrary f € S,: LHS = T-equivariant cohomology of 1% with compact support.
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Theorem (G.—Lam (2020))
Let f € S, be a single cycle.

’P(I‘I‘;/T; q,t) = top a-deg. coef. of Pkr(Ls; a,q,t) ‘

]#(nc;/r)(u«*q) = top a-deg. coef. of P(Ly; a, q)‘ ] PN/ T)(C)it) =... \
g=1"~, =1

o .°

. M~
’ Interesting number? ‘

Is it true that we always have P(M%/T;q,t) € Nq, t]?

A: No. Smallest known counterexample is a single cycle in Si4.
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Definition (G.—Lam (2021))

e Draw a generic concave curve C from (0,0) to (n — k, k).

@ Project it to the unit square.
@ Segments of higher slope are drawn above segments of lower slope.
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Find a class of permutations for which P(M%/T; q, t) € N|q, t].
Interesting numbers?

Definition (G.—Lam (2021))

e Draw a generic concave curve C from (0,0) to (n — k, k).

@ Project it to the unit square.

@ Segments of higher slope are drawn above segments of lower slope.

@ The result is a positroid link (knot) L¢, where f € S, is a single cycle.
°

The knot Lf depends only on the Young diagram above C.
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Theorem (G.—Lam (2021))

The q = 1 evaluation of #(N%/T)(Fq) equals the number # Dyck¢ of
Dyck paths that stay above C.

Conjecture (G.—Lam (2021))

. P
o P((NF/T)(C); t) =3 pepyck, garealP),
e P(N$/T;q,t) is the generalized g, t-Catalan number studied by
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e Compute the point count #(M2/T)(Fy).




Let C be a concave curve and f € S, the corresponding permutation.

Conjecture (G.—Lam (2021))

o P((NM/T)C)it) =3 pepyer, 7.
e P(MN%/T;q,t) is the generalized g, t-Catalan number studied by
[Gorsky—Negut—Rasmussen '16], [Oblomkov—Rozansky '17], [Gorsky—Hawkes—Schilling—Rainbolt '19]

P(Ng/T;q,t) L > peDyckc garea(P) gdinve(P)

té:_q_f/ \ﬂ;zl

#G/T)F) = S pevyeec 477 P/ TYC): ) £ T pepyar )

Open Problem
o Compute the point count #(Mz/T)(F).
@ Find a statistic dinvc such that P(M2/T;q,t) = ZPeDyckC garea(P) gdinve(P)
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| A\

Open Problem

Given a concave curve C, find a statistic dinv¢c such that
ZpeDyckC tarea(P) qdinve(P) s ¢ t-symmetric and q, t-unimodal.

\
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Thanks!



