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Motivating example

Fix a skew shape λ \ µ. Ex.:

λ \ µ = (3, 2) \ (1, 0) =

Fix content c = 1ν12ν2 · · · , i.e. a multiset of integers. Ex.:

c = (1, 1, 2, 2)

Count semistandard Young tableaux of shape λ \ µ and content c:

1 1
2 2

1 2
1 2
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Motivating example

shape ⇝ Schur function sλ\µ content ⇝ hν :=
∏

i hνi

The answer is:
(sλ\µ, hν)

s(3,2)\(1,0) = s(2,2) + s(3,1)

h(2,2) = s(4) + s(3,1) + s(2,2)

(s(3,2)\(1,0), h(2,2)) = 2

Remark

The dimension of the space of symmetric functions is the number
of partitions, which is smaller than both the number of possible
shapes and the number of possible contents. So there must be
relations!
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Variations

Suppose we want to count arbitrary SSYT with entries 1, . . . , k

Or SSYT with entries 0, 1, 2, · · · , but we weigh each entry i by qi .

In each case, we know that there exists a symmetric function f
(the sum χ :=

∑
c hν(c) or a linear combination) such that the

answer is (sλ\µ, f ). The question is only how to find f .

Approach: count SSYT of some easy shape, recover f and use it
for all shapes.

Anton Mellit* Combinatorial expressions for the nabla operator



Variations

Suppose we want to count arbitrary SSYT with entries 1, . . . , k

Or SSYT with entries 0, 1, 2, · · · , but we weigh each entry i by qi .

In each case, we know that there exists a symmetric function f
(the sum χ :=

∑
c hν(c) or a linear combination) such that the

answer is (sλ\µ, f ). The question is only how to find f .

Approach: count SSYT of some easy shape, recover f and use it
for all shapes.

Anton Mellit* Combinatorial expressions for the nabla operator



Variations

Suppose we want to count arbitrary SSYT with entries 1, . . . , k

Or SSYT with entries 0, 1, 2, · · · , but we weigh each entry i by qi .

In each case, we know that there exists a symmetric function f
(the sum χ :=

∑
c hν(c) or a linear combination) such that the

answer is (sλ\µ, f ). The question is only how to find f .

Approach: count SSYT of some easy shape, recover f and use it
for all shapes.

Anton Mellit* Combinatorial expressions for the nabla operator



Variations

Suppose we want to count arbitrary SSYT with entries 1, . . . , k

Or SSYT with entries 0, 1, 2, · · · , but we weigh each entry i by qi .

In each case, we know that there exists a symmetric function f
(the sum χ :=

∑
c hν(c) or a linear combination) such that the

answer is (sλ\µ, f ). The question is only how to find f .

Approach: count SSYT of some easy shape, recover f and use it
for all shapes.

Anton Mellit* Combinatorial expressions for the nabla operator



Variations

In the first situation we consider shapes of the form

. The answer is given by the binomial coefficients, so we obtain

(f , eλ) =
∏
i

(
m

λi

)
.

and recover f :

f =
∑
λ

∏
i

(
m

λi

)
ω(mλ)

also

f =
∑
λ

∏
i

(
m + λi − 1

λi

)
mλ
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P-tableaux (after Gessel-Viennot, Shareshian-Wachs,...)

Definition

A unit interval order is a linearly ordered set (P, >) together with a
second order relation ≻ called “much greater than” satisfying

a ≻ b ⇒ a > b, a ≻ b ∧ b > c ∨ a > b ∧ b ≻ c ⇒ a ≻ c .

Equivalent objects: Dyck path, Hessenberg function.

5
4

3
2

1

4 ≻ 1, 5 ≻ 1

Slang: if a < b, but a ̸≺ b, i.e. if b is “not too far”, we say that a
attacks b. Above 1 attacks 2, 3 and 2 attacks 3, 4, 5.
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P-tableaux (after Gessel-Viennot, Shareshian-Wachs,...)

Definition

A P-tableau of some shape λ \ µ with entries in some UIO P is a
filling of λ \ µ by entries of P such that we have

a b ⇒ a ̸≻ b, a
b ⇒ a ≺ b.

Some observations:

a
b is a P-tableau ⇔ b a is not a P-tableau.

a
b is in a P-tableau ⇒ a < b.

Exercise: any two elements in neighboring diagonals know their
relative position.
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Counting P-tableaux

Definition

The q-weight of a P-tableau is

qnumber of pairs a, b, such that a attacks b and a is to the left of b.

Theorem (Shareshian-Wachs)

For a finite UIO P there exists a symmetric function χP such that
for any skew shape λ \ µ the q-weighted number of P-tableaux of
shape λ \ µ is given by

(χP , sλ\µ).

This χP is called chromatic symmetric function, or LLT function.
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Some examples

UIO: Z≥0 with i ≻ j if i > j + 1.

A sequence (a1, a2, . . . , an) is a P-tableau of shape (n) iff
a2 ≥ a1 − 1, a3 ≥ a2 − 1, and so on. Equivalently,

an−1 ≤ an + 1, an−2 ≤ an−1 + 1, . . . .

If additionally an = 0, then this is the area sequence of a Dyck
path!

⇝ 0, 1, 2, 2, 3 ⇝ 3 2 2 1 0 .

Parking functions: similarly. Other shapes: nested Dyck paths.

We could use it to enumerate Dyck paths if only we could single
out the tableaux satisfying an = 0.
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A generalization

It is natural! In the context of Young tableaux, the set of cells
containing < k is again a skew shape. For P-tableaux it is not so.
Take ≤ 5 in

3 2 1 0 0
6 5 4 3 4
8 7 6 5

⇝
3 2 1 0 0

5 4 3 4
5

⇝ ∗
∗

Each column still is a column, but the height can increase, but
only if a column ends with a 5.

Definition

A generalized shape is a shape of the form (λ1, λ2, . . . , λn)
t , some

of the cells of the shape are marked with stars, so that

1 A star can only be placed in the bottommost cell of a column.

2 We have λi ≤ λi−1, but if the i-th column has a star, then
λi = λi−1 + 1 is also allowed.
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Consider a UIO together with a number k so that the k greatest
elements are maximal for ≻. These will be called special. Consider
a generalized shape with k stars. Fix a bijection between the stars
and the special elements. With these entries fixed, we q-count the
P-tableaux.

Now the condition a1 = 0 can be expressed as a
“star-condition”.

A Dyck path with a prescribed position of touch-points is the same
thing as a tableau of shape

∗ ∗

UIO: Z≤, maximal elements: 0. Dyck path ⇝ tableau with entries
−a0, −a1, . . . .
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The space Vk is the space of functions symmetric in all but k
variables

Vk = C[x1, x2, . . .]S∞ [y1, . . . , yk ].

Endow Vk with a pairing: monomials in y times Schur functions in
x form an orthnormal basis.

Theorem

For each UIO P with k special elements there exists an element
χP,k ∈ Vk , and for each generalized shape λ with k stars there
exists an element χλ ∈ Vk so that the count above is given by

(χP,k , χλ).

χP,k is basically the “character of a partial Dyck path”. In this
context it is defined by counting fillings of collections of vertical
bars (= chains in the UIO).
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From Vk back to (another) Sym

Sym
generalization−−−−−−−−→ Vk

projection−−−−−−→ C[y1, . . . , yk ]
symmetrization−−−−−−−−−→

Corresponds to

shapes
generalization−−−−−−−−→ generalized shapes

specialization−−−−−−−−→ special shapes

contents
generalization−−−−−−−−→ UIOs

specialization−−−−−−−−→ connected UIOs

Definition

A generalized shape is special if every row begins with a star. A
UIO is connected if the attack graph is connected.

We have two symmetric functions: Shareshian-Wachs’s χP , and a
new function χ′

P,k .
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Special cases

∗ ∗ ⇝ C6,4 = C6C4(1)

certain modified Hall-Littlewood polynomial.

∗
∗

∗
⇝ ±Schur of

∗ ∗
∗

The row lengths turn into the hook lengths of the main diagonal.
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Conclusion

Theorem

If some enumeration of Dyck paths/parking functions/UIOs is
given by scalar products (f ,Cα) for some f ∈ Sym, then the
corresponding enumeration of nested Dyck paths/parking
functions/P-tableaux is given by the scalar products (f ,±sλ).
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Shuffle conjecture

∇H̃λ[X ; q, t] = q
∑

ai t
∑

ℓi H̃λ[X ; q, t]

Expanding ∇f leads to sums of rational functions (like in Eugene’s
talk)

But we know that the denominators always cancel out, and
sometimes ∇f is even positive!

compositional shuffle conjecture [HHLRU], shuffle theorem [CM]

∇en = enumeration over parking functions

Parking function = Dyck path+labeling of vertical steps

en =
∑
α

Cα, ∇Cα = paths have prescribed touch points
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Loehr-Warrington conjecture

Loehr-Warrington conjecture, theorem [BHMPS]

∇sλ = enumeration over nested parking functions

Move nabla to the right

(∇f , hµ) = (f ,∇∗hµ).

So both conjectures are equivalent to the statement

∇∗hµ = weighted sum of χ′
P over UIOs P.

In fact we have UIOs the submultisets of Z≤0, a ≻ b if a ≥ b + n.
Each −a is weighted by t⌊

a
n
⌋. Also works for ∇k , and seems to

work in the rational case.
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Open problems I

About χP : Stanley-Stembridge conjecture: χP is h-positive.

Jeu-de-Taquin on P-tableaux would prove it.

Shape — content duality: Zelevinsky’s pictures would prove it.

Are there some algebraic structures on P-tableaux, similar to the
affine Hecke algebra representations with basis the usual skew
tableaux?
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Open problems II

About χ′
P : It seems there is positivity involving canonical basis in

the affine Hecke algebra. Polynomials in y1, . . . , yk correspond to

AffHeckek ·
∑
π∈Sn

Tπ.

Canonical basis in Vk?

Why strange signed Schur positivity?
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Geometry

For χP there is a geometric interpretation by Shareshian-Wachs.
Hessenberg varieties (Julianna’s talk).

Given P, k and a regular semisimple γ consider space of flags
satisfying

1 γFi ⊂ Fh(i)
2 Fn−k does not contain any coordinate line.

Example: Pn−1 without coordinate hyperplanes. Obtain (C∗)n−1,
the cohomology is the exterior algebra.

As Sn-rep we have H i is the i-th hook.

Anton Mellit* Combinatorial expressions for the nabla operator



Geometry

For χP there is a geometric interpretation by Shareshian-Wachs.
Hessenberg varieties (Julianna’s talk).

Given P, k and a regular semisimple γ consider space of flags
satisfying

1 γFi ⊂ Fh(i)
2 Fn−k does not contain any coordinate line.

Example: Pn−1 without coordinate hyperplanes. Obtain (C∗)n−1,
the cohomology is the exterior algebra.

As Sn-rep we have H i is the i-th hook.

Anton Mellit* Combinatorial expressions for the nabla operator



Geometry

For χP there is a geometric interpretation by Shareshian-Wachs.
Hessenberg varieties (Julianna’s talk).

Given P, k and a regular semisimple γ consider space of flags
satisfying

1 γFi ⊂ Fh(i)
2 Fn−k does not contain any coordinate line.

Example: Pn−1 without coordinate hyperplanes. Obtain (C∗)n−1,
the cohomology is the exterior algebra.

As Sn-rep we have H i is the i-th hook.

Anton Mellit* Combinatorial expressions for the nabla operator



Geometry

For χP there is a geometric interpretation by Shareshian-Wachs.
Hessenberg varieties (Julianna’s talk).

Given P, k and a regular semisimple γ consider space of flags
satisfying

1 γFi ⊂ Fh(i)
2 Fn−k does not contain any coordinate line.

Example: Pn−1 without coordinate hyperplanes. Obtain (C∗)n−1,
the cohomology is the exterior algebra.

As Sn-rep we have H i is the i-th hook.

Anton Mellit* Combinatorial expressions for the nabla operator



Conjecture

Some spaces have the property: for a partition λ the corresponding
Sn-rep appears only in Hι(λ) where ι(λ) is the number of cells
under the main diagonal.
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