Igor Pak, UCLA

May 18, 2022

What is a combinatorial interpretation?

(joint work with Christian Ikenmeyer)

Open Problems in Algebraic Combinatorics (Minneapolis, 2022)

Plan of the talk: four deep questions

- 1) Why do we care about combinatorial interpretations?
- 2) Why are people so *positive* about their existence
 - against both evidence, reason and experience?
- 3) What *are* combinatorial interpretations?
- 4) How can we prove that they don't exist?

arXiv:2204.13149 [pdf, ps, other] cs.CC What is in #P and what is not? Authors: Christian Ikenmeyer, Igor Pak [Submitted on 27 Apr 2022] 82 pp.

Most wanted combinatorial interpretations

• Kronecker coefficients $g(\lambda, \mu, \nu) \in \mathbb{N}$

$$\chi^{\mu} \cdot \chi^{\nu} = \sum_{\lambda \vdash n} g(\lambda, \mu, \nu) \chi^{\lambda} \text{ where } \mu, \nu \vdash n$$

describe tensor products of irreducible S_n -reps generalize Littlewood-Richardson coefficients

• plethysm coefficients $a_{\lambda}(\mu, \nu) \in \mathbb{N}$

$$s_{\mu} \big[s_{\nu} \big] \; = \; \sum_{\lambda} \, a_{\lambda}(\mu,\nu) \, s_{\lambda}$$

describe Schur functors of irreducible S_n -reps crucial in Geometric Complexity Theory

Positivity Problems and Conjectures in Algebraic Combinatorics

Richard P. Stanley¹ (2000)
• Schubert coefficients
$$c(u, v, w) \in \mathbb{N}$$

 $\mathfrak{S}_u \cdot \mathfrak{S}_v = \sum_w c(u, v, w) \mathfrak{S}_w$
describe cohomology of the Grassmannian

Why work on combinatorial interpretations?

When you ask the experts, they tell you:

- 1) Intellectual curiosity
- 2) Need to publish
- 3) Blind belief in the mission
- 4) Getting estimates
- 5) Saturation-type problems (after Knutson-Tao)
- 6) Vanishing problems

Vanishing struggles:

Deciding if $g(\lambda, \mu, \nu) > 0$ is strongly NP-hard

[Ikenmeyer-Mulmuley-Walter'17]

Estimate struggles:

 $1 \leq g(\delta_k, \delta_k, \delta_k) \leq f^{\delta_k} = \sqrt{n!} e^{-O(n)}$

where $\delta_k = (k - 1, \dots, 2, 1), \quad n = \binom{k}{2}, \quad f^{\delta_k} := \operatorname{SYT}(\delta_k)$

[Bessenrodt-Behns'04], [P.-Panova-Vallejo'16], [P.-Panova'20]

$Saturation \ struggles:$

Saturation easily fails for Kronecker coefficients, e.g.

 $g(2^2, 2^2, 2^2) = 1$ but $g(1^2, 1^2, 1^2) = 0.$

Moreover, saturation fails for the *reduced Kronecker coefficients* [P.-Panova'20]

Why would they exist?

Positive experience

- (1) Young's rule: $f^{\lambda} = |SYT(\lambda)|$, where $f^{\lambda} := \chi^{\lambda}(1)$ [Young, 1900]
- (2) Littlewood-Richardson's rule: $c_{\mu\nu}^{\lambda} = \left| LR(\lambda/\mu,\nu) \right|$ [L-R, 1934]

(3) *Pipe dreams rule*: $\mathfrak{S}_w = \sum_D \boldsymbol{x}^D$ [Fomin-Kirillov'96], [Bergeron-Billey'93], [Knutson-Miller'05]

(4) (few/several/many) more extensions/generalizations/variations on the theme (many papers) -

Perseverance & Optimism (as in "why be discouraged by failures?")

Kroneckers

real soon!

Combinatorics Seminar

Thursday February 07, 2013

Sami Assaf (USC)

Stable Schur functions

Combinatorics Seminar

Thursday May 11, 2017

Sami Assaf (USC)

Schubert polynomials and slide polynomials

real soon!

Schuberts

Why would they NOT exist?

- Very brief history of negative results:
- (1) rational numbers < geometric numbers Pythagoras (6th century BC): $\sqrt{2} \notin \mathbb{Q}$
- (2) ruler/compass numbers < geometric numbers
 Gauss (1796): regular 7-gon cannot be constructed
- (3) radical numbers < algebraic numbers
 Ruffini (1799), Abel (1824): quintic equations cannot be solved in the radicals
- (4) elementary functions < their integrals Liouville (1833-41): $\int \frac{\sin x}{x} dx$, $\int e^{-x^2} dx$ are not elementary
- (5) algebraic numbers < reals

Liouville (1844), *Cantor* (1874): \exists (many) transcendental numbers

Seriously, why *would* Kronecker coefficients have a combinatorial interpretation?

Imaginary conversation of 15 y.o. Gauss and his friend:

Friend: Why do you believe that the heptagon cannot be constructed?

Gauss: IDK. Because many smart people tried and failed. Why do you believe that it can?

Friend: Isn't it obvious? We can construct so much: triangle, square, pentagon, hexagon, even octagon. I am very optimistic!

(Braunschweig, Germany, 1793)

What is a combinatorial interpretation?

Wrong Answer: anything that we can count!

What is Combinatorics?

Cherednik (2002):

Combinatorics is the science of counting the possible arrangements and ways

of organizing collections of anything (e.g., atoms, pebbles, star clusters).

 $g(\lambda,\mu,
u)$ $g(\lambda,\mu,
u)$

Billey (Feb. 2021): I never say "It is an open problem to find a combinatorial interpretation for the Schubert coeff." They already count something!

Billey to P. (Apr. 2022): *They count the number of points in a generic intersection of 3 Schubert varieties.*

What is a combinatorial interpretation?

Wrong Answer:

Popper: A belief needs to be disprovable in order to be scientific!

CONJECTURES & REFUTATIONS The Growth of Scientific Knowledge W KARL R. POPPER

We need a formal definition!

What is a combinatorial interpretation?

Correct Answer: #P (a notion in computational complexity)

What is #P?

Quick and easy guide with examples:

(0) P – class of poly-time decision problems **FP** – class of poly-time counting problems *Examples:* GraphConnectivity, PerfectMatching, $c_{\mu\nu}^{\lambda} > 0 \in \mathbf{P}$ #SpaningTrees, #PerfectMatching in planar graphs, f^{λ} , $s_{\lambda}(1, \ldots, 1) \in FP$ (1) NP - class of decision problems where objects can be verified in poly-time NP-complete – class of hardest problems in NP *Examples:* **3Coloring**, **HC** (Hamiltonian cycle), **Knapsack** \in NP-c (2) #P - class of counting problems where objects can be verified in poly-time #P-complete – class of hardest problems in #P

Examples: #3Coloring, #HC, #Knapsack, #PerfectMatching, $c_{\mu\nu}^{\lambda} \in \text{#P-c}$

Where are our favorite problems?

(3) GAPP := #P - #P and $GAPP_{>0} := GAPP \cap \mathbb{N}$ $g(\lambda, \mu, \nu) \in \text{GAPP}_{>0}$ [Christandl-Doran-Walter'12], [P.-Panova'17] $a_{\lambda}(\mu, \nu) \in \text{GAPP}_{>0}$ [Fischer-Ikenmeyer'20] $c(u, v, w) \in \text{GAPP}_{>0}$ follows from [Postnikov-Stanley'09] Translation to Algebraic Combinatorics lingo: $GAPP_{>0} =$ "Combinatorial Interpretation" #P = "Manifestly Positive Combinatorial Interpretation" *Note:* Billey's "combinatorial interpretation" is not in #Pbecause of Vakil's Murphy's law (2006)

Other problems in $\operatorname{GAPP}_{\geq 0}$?

(1) $e(P) - 1 \in \text{GAPP}_{>0}$ (1) and (3) $\in \# P$ (easy) $P = (X, \prec)$ is a poset, e(P) = # linear extensions of P (2) $m_k(G)^2 - m_{k+1}(G)m_{k-1}(G) \in \text{GAPP}_{>0}$ $(2) \in \#P$ by [Krattenthaler'96] $m_k(G) := \# k$ -matchings in G [Heilmann-Lieb'72] (3) $(2m)^{n-1} - n(n-1)^{n-1}\tau(G) \in \text{GAPP}_{>0}$ $G = (V, E), |V| = n, |E| = m, \tau(G) = \#$ spanning trees [Grimmett'76] (4) $f_k(G)^2 - f_{k+1}(G) f_{k-1}(G) \in \text{GAPP}_{>0}$ $f_k(G) := \# k$ -forests in G [Adiprasito-Huh-Katz'18] (4) \in [?] #P is a major open problem. No combinatorial proof is known. see also [Anari-Liu-Oveis_Gharan-Vinzant'18], [Brändén-Huh'20], [Chan-P.'21]

Can we prove anything at all?

Yes, now we can! **Proposition** [Ikenmeyer-P.'22] *Note:* $GAPP^2 = (\#P - \#P)^2 \subseteq GAPP_{>0}$ If $GAPP^2 \subseteq \#P$, then $PH = \Sigma_2^p$. *Explanation of Proposition*: Let G, H be two graphs. Define $f(G, H) := (\#3\text{-colorings in } G - \#3\text{-colorings in } H)^2$ Then $f(G, H) \notin \#P$, i.e. does not have a combinatorial interpretation unless (*) *Explanation of* (\ast): You can decide $\exists \forall \exists \ldots \forall \Phi$ just as fast as $\exists \forall \Phi$. This is universally conjectured to be *false* (PH $\neq \Sigma_2^p$ is stronger than P \neq NP). **Proof idea:** Suppose $f(G, H) \in \#P$. Then there is a poly-time certificate for (#3-colorings of G) \neq (#3-colorings of H). But that would be too powerful, akin to poly-time certificate for (#3-colorings of G) = 0.

Our results (a sampler):

The following are $\notin \#P$ (under some complexity assumptions) Minkowski inequality Cauchy inequality $(x_1y_1 + \ldots + x_ny_n)^2 \le (x_1^2 + \ldots + x_n^2)(y_1^2 + \ldots + y_n^2) - \prod_{i=1}^n (x_i^n + y_i^n) \ge \left[\prod_{i=1}^n x_i + \prod_{i=1}^n y_i\right]$ Karamata inequality $Hadamard\ inequality^ \det \begin{pmatrix} a_{11} & \cdots & a_{1d} \\ \vdots & \ddots & \vdots \\ a_{d1} & \cdots & a_{dd} \end{pmatrix}^2 \leq \prod_{i=1}^d \left(a_{i1}^2 + \ldots + a_{id}^2 \right)$ Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$, such that $\boldsymbol{x} \geq \boldsymbol{y}$. Then, for every convex $f : \mathbb{R}^n \to \mathbb{R}$, we have $f(x) \ge f(y)$. **Definition:** Let $\boldsymbol{x} = (x_1, \ldots, x_n), \, \boldsymbol{y} = (y_1, \ldots, y_n) \in \mathbb{R}^n$ be nonincreasing sequences. We say: \boldsymbol{x} majorizes \boldsymbol{y} , write $\boldsymbol{x} \geq \boldsymbol{y}$, if $x_1 + \ldots + x_i \ge y_1 + \ldots + y_i$ for all $1 \le i < n$, and $x_1 + \ldots + x_n = y_1 + \ldots + y_n.$

Case study: *Gessel sequence*

A250102 as a simple table -

$b_n := 2 \cdot 5^n - (3+4i)^n - (3-4i)^n$, where $i = \sqrt{-1}$	n	b_n	_
	0	0	
	1	16	
Note that $b_n \in \mathbb{Z}$ since	2	64	
	3	16	
$\sum_{n=2}^{\infty} \sum_{n=2}^{\infty} \sum_{n$	4	2304	_
$b_n = 2 \cdot 5^n - 2 \sum (-1)^r ($	5	5776	_
$\sim (2r)$	6	7744	_
	7	309136	_
and that $b_i \ge 0$ since $ 3 \pm 4i = 5$.	8	451584	_
$O_n = \lfloor 2 \operatorname{III}(1+2i) \rfloor$	9	2062096	_
	10	38837824	_
b - b + 5b + 125b + 6 for $n > 2$	11	27920656	
$0_n = -0_{n-1} + 30_{n-2} + 1230_{n-3}$ 101 $n > 2$.	12	424030464	_
	13	4570300816	_
16t(1+5t)	14	1039933504	_
$B(t) := \sum b_n t^n = \frac{1}{(1 - \tau)(1 - \sigma)}$ not N-rational —	15	74815378576	_
$(1-5t)(1+6t+25t^2)$ (1-100 14 1400 141)	16	501671890944	_
	17	2396689936	

Open Problem: Does $\{b_n\}$ have a combinatorial interpretation?

Case study: generalized Gessel sequences

Consider $\{a_n\} = \{a_n(f,g)\}$ defined as $a_n(1,2) = b_n$ $a_n := 2(f^2 + g^2)^n - (f + gi)^{2n} - (f - gi)^{2n}$. $A(t) := \sum a_n t^n \in \mathbb{Z}(t) \cap \mathbb{N}[[t]].$ n=0Suppose now that f, g are #P functions. $a_1 = 4g^2 \in \#\mathbf{P}$ $a_2 = 16f^2g^2 \in \#\mathbf{P}$ $a_3 = 4g^2(3f^2 - g^2)^2 \notin \#P$ unless UP = COUP $a_4 = \left[8fg(f+g)(f-g)\right]^2 \notin \# \mathbf{P}$ unless $\mathbf{PH} = \Sigma_2^{\mathbf{p}}$ **Conjecture:** $a_n(f,g) \notin \#P$ for all $n \geq 3$.

