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The plethysm problem Diagram algebras Uniform block permutation algebra Symmetric chain decompositions

Why work on a combinatorial interpretation?

Inspiration/excuse to learn a lot more mathematics

Develop a better understanding of the underlying structure
(representation theory, geometry, ....)

Research is a little like a random walk, you bump into a lot of cool
stuff on the way, even if you do not return necessarily to the original
question.



The plethysm problem Diagram algebras Uniform block permutation algebra Symmetric chain decompositions

Why work on a combinatorial interpretation?

Inspiration/excuse to learn a lot more mathematics

Develop a better understanding of the underlying structure
(representation theory, geometry, ....)

Research is a little like a random walk, you bump into a lot of cool
stuff on the way, even if you do not return necessarily to the original
question.



The plethysm problem Diagram algebras Uniform block permutation algebra Symmetric chain decompositions

Why work on a combinatorial interpretation?

Inspiration/excuse to learn a lot more mathematics

Develop a better understanding of the underlying structure
(representation theory, geometry, ....)

Research is a little like a random walk, you bump into a lot of cool
stuff on the way, even if you do not return necessarily to the original
question.



The plethysm problem Diagram algebras Uniform block permutation algebra Symmetric chain decompositions

Representations

G group, V vector space

Representation ρ : G → End(V ) homomorphism

Character char(g) = traceρ(g)

Remark

Characters are class functions, that is, they are constant on conjugacy
classes char(hgh−1) = char(g).
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Plethysm via representations of GLn

Definition

GLn(C) = invertible n × n matrices

GLn-representation ρ : GLn → GLm

GLm-representation τ : GLm → GLr

Composition is GLn-representation

τ ◦ ρ : GLn → GLr

Definition

Character of composition is plethysm:

char(τ ◦ ρ) = char(τ)[char(ρ)]
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Frobenius map

Rn space of class functions of GLn
Λn ring of symmetric functions of degree n

Power sum symmetric function pλ

pλ = pλ1pλ2 · · · pλ`
pr = x r1 + x r2 + · · ·

Schur function sλ
sλ =

∑
T∈SSYT(λ)

xwt(T )
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Frobenius map – continued

Definition

The Frobenius characteristic map is chn : Rn → Λn

chn(χ) =
∑
µ`n

1

zµ
χµpµ

where zµ = 1a1a1!2a2a2! · · · for µ = 1a12a2 · · ·

Remark

The irreducible character χλ indexed by λ under the Frobenius map is

chn(χλ) = sλ

by the identity

sλ =
∑
µ

1

zµ
χλµpµ
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Plethysm for symmetric functions

Definition

f , g ∈ Λ symmetric functions
Monomial expansion f =

∑
i>1 x

ai

The plethysm g [f ] is defined by

g [f ] = g(xa
1
, xa

2
, . . .)

Remark

Plethysm: Greek for multiplication

Example

s1 = x1 + x2 + · · · ⇒ g [s1] = g(x1, x2, . . .) = g

pn = xn1 + xn2 + · · · ⇒ f [pn] = f (xn1 , x
n
2 , . . .) =

∑
i>1 x

ain = pn[f ]
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Plethysm for symmetric functions – example

Example

s2[x1, x2] =x2
1 + x1x2 + x2

2

1 1 1 2 2 2

Plethysm

s2[s2[x1, x2]] =s2[x2
1 , x1x2, x

2
2 ]

=x4
1 + x3

1x2 + x2
1x

2
2 + x2

1x
2
2 + x1x

3
2 + x4

2

1 1 1 2 1 3 2 2 2 3 3 3

1111 1112 1122 1212 1222 2222

=s4[x1, x2] + s2,2[x1, x2]
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Plethysm problem

Problem

Find a combinatorial interpretation for the coefficients aνλµ∈ N in the
expansion

sλ[sµ] =
∑
ν

aνλµsν

Problem

Find a crystal on tableaux of tableaux which explains aνλµ.
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Plethysm problem – special cases

Partition λ is even if all columns have even length

Partition λ is threshold if λ′i = λi + 1 for all 1 6 i 6 d(λ)

Theorem

We have

sh[s2] =
∑
λ`2h
λ even

sλ′ sh[s12 ] =
∑
λ`2h
λ even

sλ

s1h [s2] =
∑
λ`2h

λ threshold

sλ′ s1h [s12 ] =
∑
λ`2h

λ threshold

sλ

Appeared in Littlewood 1950, Macdonald 1998 (pg 138)
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Littlewood and Macdonald
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Easy proof – s-perp trick

Action of s⊥λ on f ∈ Λ

s⊥λ f =
∑
µ

〈f , sλsµ〉 sµ

Proposition (The s-perp trick)

Let f and g be two symmetric functions of homogeneous degree d. If

s⊥r f = s⊥r g for all 1 6 r 6 d,

then f = g. Same statement is true if s⊥r is replaced by s⊥1r .
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Let f and g be two symmetric functions of homogeneous degree d. If

s⊥r f = s⊥r g for all 1 6 r 6 d,
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The following hold:
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Easy proof – s-perp trick

Action of s⊥λ on f ∈ Λ

s⊥λ f =
∑
µ

〈f , sλsµ〉 sµ

Proposition (The s-perp trick)

Let f and g be two symmetric functions of homogeneous degree d. If

s⊥r f = s⊥r g for all 1 6 r 6 d,

then f = g. Same statement is true if s⊥r is replaced by s⊥1r .

Remark

Benefit: Fast computational algorithm to compute plethysm of Schur
functions!
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Relationship between restriction problem and plethysm

Restriction: λ partition with at most n parts

ResGLnSn
V λ
GLn =

⊕(
V µ
Sn

)rλµ

rλµ = coefficient of sµ in the plethysm s(n−|λ|,λ)[s(1) + s(2) + · · · ]
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Diagram algebras

Restrict diagonal action of GLn on V⊗k to Sn ⊆ GLn: for σ ∈ Sn

σ(vi1 ⊗ vi2 ⊗ · · · ⊗ vik ) = σvi1 ⊗ · · · ⊗ σvik

What commutes with this action?
Answer: Partition algebra Pk(n) Martin, Jones 1990s

Basis: set partitions of {1, 2, . . . , k} ∪ {1, 2, . . . , k}

Example

The set partition π = {{1, 2, 4, 2, 5}, {3}, {5, 6, 7, 3, 4, 6, 7}, {8, 8}, {1}} is
represented by the following diagram:

π =

543

54

21

1 2 3 6

6

7

7

8

8
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Martin and Jones
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Centralizer pair

V
(n−|λ|,λ)
Pk (n) = simple module indexed by partitions λ such that

λ1 + λ2 + · · · 6 k

Example

V
(4,2)
P3(6) = span

{
3

1 2
, 2

1 3
, 1

2 3
,

12 3
,

1 23
,

2 13

}
Dimension is number of set valued tableaux

Theorem (Jones 1994)

V⊗k ∼=
⊕

λ,λ1+λ2+···6k

V
(n−|λ|,λ)
Pk (n) ⊗ V

(n−|λ|,λ)
Sn

Remark

Sk and GLn form a centralizer pair

Pk(n) and Sn form a centralizer pair
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See-Saw pairs

(See book by Goodman, Wallach)

A ↪→ B algebra embedding ResBA V λ
B =

⊕
µ

(
V µ
A

)⊕cλµ
B D

V

A C

•B and C centralizer pair
•A and D centralizer pair

1 Indices for the simple modules for B and C are the same.
2 Indices for the simple modules for A and D are the same.

ResDC V µ
D =

⊕
λ

(
V λ
C

)⊕cλµ
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Our See-Saw pair

GLn Pk(n)

V⊗k

Sn Sk

ResGLnSn
V λ
GLn =

⊕
µ

(
V µ
Sn

)⊕rλµ
Res

Pk (n)
Sk

V µ
Pk (n) =

⊕
λ

(
V λ
Sk

)⊕rλµ
Idea: Restrict representations of Pk(n) to Sk
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The approach

Uk uniform block permutation algebra

Sk ↪→︸ ︷︷ ︸
special cases of plethysm

Uk ↪→ Pk(n)︸ ︷︷ ︸
generalized LR coefficients

Goal: Combinatorial model for the representation theory of Uk
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Uniform block permutations

Tanabe, Kosuda
Party algebra, centralizer algebra for complex reflection groups

Definition

The set partition d = {d1, d2, . . . , d`} of [k] ∪ [k̄] is uniform if
|di ∩ [k]| = |di ∩ [k̄]| for all 1 6 i 6 `. Let

Uk =
{
d ` [k] ∪ [k̄] : d uniform

}
.

Example

d = {{2, 4̄}, {5, 7̄}, {1, 3, 1̄, 2̄}, {4, 6, 3̄, 6̄}, {7, 8, 9, 5̄, 8̄, 9̄}}

Think of d as a size-preserving bijection(
{2} {5} {1, 3} {4, 6} {7, 8, 9}
{4} {7} {1, 2} {3, 6} {5, 8, 9}

)
⇒ Elements of Uk are called uniform block permutations
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Uniform block permutations – continued

Example

Diagram for {{1, 3, 1̄, 2̄}, {2, 4̄}, {4, 6, 3̄, 6̄}, {5, 7̄}, {7, 8, 9, 5̄, 8̄, 9̄}}

The product of

d = and d ′ =

is obtained by stacking the diagrams of d and d ′:

dd ′ = =
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Uniform block permutations – continued
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Idempotents

For every set partition π of [k] we define:

eπ = {A ∪ Ā : A ∈ π} ∈ Uk

where Ā = {ī : i ∈ A}.

For example,

e2|7|14|36|589 =

Lemma

The set E (Uk) = {eπ : π ` [k]} is a complete set of idempotents in Uk .
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eπ = {A ∪ Ā : A ∈ π} ∈ Uk
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Factorizable monoid

= =
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Factorizable monoid

= =

Proposition

For every d ∈ Uk and every σ ∈ Sk satisfying σ(B ∩ [k]) = B ∩ [k], we have

d = etop(d) σ = σe bot(d).

Consequently, Uk is a factorizable monoid

Uk = E (Uk)Sk = Sk E (Uk).
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Factorizable monoid

= =

(See book by Steinberg 2016)
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Maximal subgroups

Definition

M finite monoid, e idempotent
Maximal subgroup: Ge = unique largest subgroup of M containing e

Lemma

The maximal subgroup of Uk at the idempotent eπ is

Geπ = {d ∈ Uk : top(d) = bot(d) = π}

Example

For π = {{1}, {2}, {3, 4}, {5, 6}}

Geπ =
{

, , ,
}
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Maximal subgroups – continued

Example

For π = {{1}, {2}, {3, 4}, {5, 6}} with type(π) = (1222)

Geπ =
{

, , ,
}

Theorem

For π ` [k] with type(π) = (1a12a2 . . . kak )

Geπ ' Sa1 × Sa2 × · · · × Sak
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Representation theory of Uk

Indexing set of simple modules

Ik =

{(
λ(1), λ(2), . . . , λ(k)

)
: λ(i) are partitions such that

k∑
i=1

i |λ(i)| = k

}

Example

I3 = {((3), ∅, ∅), ((2, 1), ∅, ∅), ((1, 1, 1), ∅, ∅), ((1), (1), ∅), (∅, ∅, (1))}
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Representation theory of Uk – continued

Definition

A uniform tableau S = (S (1), . . . ,S (k)) of shape ~λ ∈ Ik satisfies:

1 S (i) is a tableau of shape λ(i) filled with subsets of [k] of size i ;

2 S (i) is standard;

3 the subsets appearing in S form a set partition of [k].

We define T~λ to be the set of uniform tableaux of shape ~λ.

Irreducible representations: V
~λ
Uk = span

{
S ∈ T~λ

}
Example

V
((1),(1),∅)
U3

= span
{(

1 , 23
)
,
(

2 , 13
)
,
(

3 , 12
)}
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Characters of Uk

Definition

M be a finite monoid.

Subsemigroup of M generated by m ∈ M contains a unique
idempotent mω

m, n ∈ M are conjugate if there exist x , x ′ ∈ M such that xx ′x = x ,
x ′xx ′ = x ′, x ′x = mω, xx ′ = nω and xmω+1x ′ = nω+1

Definition

d ∈ Geπ : cycletype(d) = (µ(1), µ(2), . . . , µ(k))
where µ(i) is the cycle type of the permutation d (i)

x ∈ Uk : cycletype(x) = cycletype(xω+1)

d~µ representative for generalized conjugacy class of cycle type ~µ
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Characters of Uk – continued

Theorem (OSSZ 2022)

~λ, ~µ ∈ Ik , ai = |λ(i)|, λ = (1a12a2 · · · kak )

χ
~λ
Uk (d~µ) =

∑
~ν∈Ik
|ν(i)|=ai

b~ν~µ χ
~λ
Gλ

(d~ν)

Example

Let ~λ = (∅, (1, 1), ∅, ∅), so that λ = (2, 2):

χ
~λ
U4

( )
= χ

~λ
Gλ

( )
+ 2χ

~λ
Gλ

( )
= −1
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Coefficients in characters

zλ = 1a1a1!2a2a2! · · · kakak ! for λ = (1a12a2 · · · kak )
z~λ = zλ(1)zλ(2) · · · zλ(k)

Theorem (OSSZ 2022)

~µ, ~ν ∈ Ik

b~ν~µ =
1

z~ν

∑
~τ(•,•)

z~µ∏
i ,j z~τ(i ,j)

where sum is over all ~τ(•, •) with ~τ(i , j) ∈ Ij and ~µ =
⊎

i ,j ν
(j)
i ~τ(i , j).
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Connections to symmetric functions

Symmetric functions on multiple variables: X = X1,X2, . . .

We define the polynomial ring

Sym∗X := C[pi [Xj ] | i , j > 1]

Power sum symmetric functions:

pµ[Xj ] := p1[Xj ]
a1p2[Xj ]

a2 · · · pr [Xj ]
ar µ = (1a12a2 · · · kak )

p~µ[X] := pµ(1) [X1]pµ(2) [X2] · · · pµ(k) [Xk ] ~µ ∈ Ik

Schur functions

s~µ[X] := sµ(1) [X1]sµ(2) [X2] · · · sµ(k) [Xk ] ~µ ∈ Ik

Scalar product 〈
p~λ[X],p~µ[X]

〉
=

{
z~µ if ~λ = ~µ

0 else
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Connections to symmetric functions – continued

Frobenius characteristic of trivial representation of Uk

Er : =
∑
~µ∈Ir

p~µ[X]

z~µ

=
∑

(1a1 2a2 ···rar )`r

sa1 [X1]sa2 [X2] · · · sar [Xr ]

Proposition (OSSZ 2022)

b~ν~µ =
1

z~ν

〈
p~ν [E],p~µ[X]

〉
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Characters, symmetric functions, and plethysm

Theorem (OSSZ 2022)

χ
~λ
Uk (d~µ) =

〈
s~λ[E],p~µ[X]

〉

χ
~λ
Gλ

(d~µ) =
〈
s~λ[X],p~µ[X]

〉
Corollary

Multiplicity of V µ
Sk

in ResUkSkV
~λ
Uk is

〈
sλ(1) [s1]sλ(2) [s2] · · · sλ(k) [sk ], sµ

〉
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Young lattice for partitions in box

∅

2 1

1

2

2

1

1 2

1 3

3 3

2 3

2 2

1 1

2 1

1

2

2

1

Partitions in box of size w × h

Crystal B(w) of type Ah

Plethysm
sw [sh[x + y ]] =

∑
ν a

ν
whsν

ν at most two parts

Example:
s2[s2[x + y ]] = s4 + s22
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Thank you !

Remark (Take away)

Plethysm is hard!

Remark (Take away)

The random walk exploring plethysm leads to interesting mathematics!
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