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Agenda
e What is a Coxeter group?

e What is the weak order on a Coxeter group”?

o W:le should it be enlarged?

e HOW could it be enlarged: Geometry of roots
o Matthew Dyer’s conjectures
o Work with Grant Barkley

e HOW could it be enlarged: Lattice theory
o Nathan Reading’s theory of shards
o Work with Nathan Reading and Hugh Thomas




Coxeter groups

A Coxeter group is generated by si, so, ..., s, modulo relations:

=1

(sis5)™=1 for some 2 < m;; < o0

Coxeter groups come with linear representations: There is a vector
space V with basis a1, as, ..., a, such that the Coxeter group acts

on V by a reflection, negating o;. Equivalently, W acts on V'V by a
il

,l: .

reflection fixing o




The symmetric group S, is generated by s, so, ..., s,_1 wWhere
si =i+ 1).




The symmetric group 5, is generated by sq, so, ..., s,_1 where
si =i+ 1).
Roughly, take V = VY = R" and «; is e; 11 — e;.

Z3 < Zy < Z4

Zy < 23 < Z4 Z3 < Z1 < 2y

Zy) < Z41<Zj3 Z1 <Z3< 2

' Z1 < Z3 < Z3
€3 — €1

More carefully, V = (1,1,...,1)> C R™ and
VY =R"/R(1,1,...,1).




The affine symmetric group is the group of bijections f : Z — Z
obeying

n

fla+n)=fla)+n Y (f(a)—a)=

1=1

The generators are

si=-(ii+D)(i+ni+n+D)(i+2ni+2n+1)---.

Here is s;, with n = 5:
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Let V}¥ be the (n + 1)-dimensional vector space of infinite real

sequences (...,2z_ 2,21, 20,21, 22,---) such that there is a constant
d with z;,, = z; +d for all 7. The affine symmetric group acts by

permuting the subscripts.

For a € Z, let e, : V¥ — R be “evaluation at a”; these are vectors
in the dual space V;. So we have e 1, — e, = €p1, — €p for all a,
be Z. Put 0 =eq1p —€q. SO €1, €2, ..., €,, 0 is a basis of V.
Our «; is e;11 — e;.

To be careful, V' is the subset of V; spanned by the e; — ¢e;; it’s dual
is V¥ modulo the constant sequences.




e The free Coxeter group of rank 3 has
M2 = M13 = Mgz = 00. Do it is generated by s1, sy and s3 modulo

the relations s§ = s3 = s3 = 1.

Geometrically, we can think of the group of symmetries of

hyperbolic plane generated by reflections over three lines which

meet at infinity.




If we use the “hyperboloid” model for hyperbolic space, we can

think of this as symmetries of R3 preserving a quadratic form with

signature + + —.

The simple roots aq, as, ag are “space-like” vectors, sticking out to
the side of the lightcone.




Weak order

A word s;,s;, - -+ S;, in the s; is called reduced if it is of minimal

£
length among words given this product.

The weak order is the partial order where u < v if there is a

reduced word s;,s;, - -+ s;, for v with a prefix s;,s;, - -+ s;, with

product u.
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We can give a more geometric description using the ideas of root

systems and inversions.




Roots and inversions
Let ® = cwlwar, wag, ..., way,}. This is the root system.

Every root is either a positive root, meaning in
Rso{a1,a9,...,a,}, or a negative root, meaning in
Rgo{&l,&g, ce ,Ozn}. So®d =0T P,

In the symmetric group, the positive roots are e; — e; for
1 <1<y <n.

In the affine symmetric group, the positive roots are e; — e; for
1 < 7,1 % j mod n. Recall that e;,, —e; = 9.

A a2+26

a2 Cl1 + 6
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Let V'V be the dual vector space to V. Each 8 € & defines a dual
hyperplane 8+ in VV. Let D = {z € VV : {a;,x) > 0for1 < i < n}.

‘ a+20

h & . 4 a + 6, a1 +20
SIS aq + o
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Theorem The uD, for u € W, are always disjoint open simplicial

cones. In finite type, they are the regions of the complement of the
hyperplane arrangement. In general, they are precisely the regions
where (3, ) is positive for all but finitely many 5 € ®7.
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Theorem The uD, for u € W, are always disjoint open simplicial

cones. In finite type, they are the regions of the complement of the
hyperplane arrangement. In general, they are precisely the regions
where (3, ) is positive for all but finitely many 5 € ®7.

We define a positive root 8 to be an tnversion of u if (3, ) is <0

on ul.

Theorem u < v in weak order if and only if Inv(u) C Inv(v).




Theorem If W is finite, then weak order is a complete lattice,

meaning that every subset X has a unique greatest lower bound

A\ X (meet) and a unique least upper bound \/ X (join).

In general, weak order is a complete meet semilattice. This means:

e Every nonempty subset X of ¥ has a meet.
o If X is a bounded above subset of W, then it has a join.




We would like to embed W into a large complete lattice.
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We would like to embed W into a large complete lattice. Why?

« Complete lattices are nice!




We would like to embed W into a large complete lattice. Why?

e Coxeter groups describe cluster algebras (Fomin-Zelevinsky;,
Reading-S., Reading-Stella, Buan-Marsh,
Buan-Marsh-Reiten-Todorov, ...). When the cluster algebra
has infinite type, the corresponding Coxeter group is infinite,
and existing methods only describe part of the cluster
complex/g-vector fan.

Coxeter groups describe torsion classes of preprojective algebras
(Ingalls-Thomas, Mizuno, Iyama-Reiten-Reading-Thomas,

Demonet-IRRT, ...). When the preprojective algebra has

infinite type, the corresponding Coxeter group is infinite, and
existing methods only describe some of the torsion classes.
Lam and Pylyavskyy, in their work on total positivity for loop
groups, put the affine weak orders into large semilattices, which
can be thought of as adding in the joins \/ w; for any ascending

chalin wy < wy < wg < -+ -.




First approach: Biclosed sets (Matthew Dyer)




Let I be a subset of ®T. We say that I is:

e closed if, for any «, B, v € ® with v € Ryga + R+ (05,
whenever o € [ and 8 € I then v € I,
e coclosed if, for any «, 8, v € ® with v € Ryga + R+,

whenever a ¢ [ and 8 ¢ [ then v & I,
e biclosed if I is closed and coclosed.

~p

Theorem: The finite biclosed sets are precisely the inversion sets.

Dyer’s big conjecture: The poset of biclosed sets of ®T, ordered

by inclusion, is a complete lattice.




Let I be a subset of ®T. We say that I is:

e closed if, for any «a, 5, v € ® with v € Ryga + R+,
whenever o € [ and 8 € I then v € I,

e coclosed if, for any a, 5, v € ® with v € Ryga + Ry,
whenever a ¢ [ and 8 ¢ [ then v & I,

Immediate consequences of the definitions

The intersection of closed sets is closed. Every subset X C & is

contained in a unique smallest closed set X.

The union of coclosed sets is coclosed. Every subset X C &+
contains a unique largest coclosed set X°.




Dyer’s big conjecture: The poset of biclosed sets of ®T, ordered

by inclusion, is a complete lattice.




Dyer’s big conjecture: The poset of biclosed sets of ®T, ordered

by inclusion, is a complete lattice.

A better formulation (Dyer): Let X be any collection of
biclosed subsets of ®*. Then |J; . I is coclosed and (¢ I)O is

closed.

If this is true, then it is immediate that (J;., I is \/ X and

(Nyex 1) is AX.




Dyer’s big conjecture: The poset of biclosed sets of ®T, ordered

by inclusion, is a complete lattice.

A better formulation (Dyer): Let X be any collection of
biclosed subsets of ®*. Then |J; . I is coclosed and (¢ I)O is

closed.

If this is true, then it is immediate that (J;., I is \/ X and

(Nyex 1) is AX.

Note that | ;. I is coclosed and ;. I is closed. So we can ask

for even more:

Stronger conjecture (Dyer): If Y C ®7 is coclosed then Y is
coclosed; if Z C ®7 is closed then Z° is closed.




Separability: A related but distinct concept

Let 6 € VV with (3,0) # 0 for all 8 € ®*. Let
X ={8ed":(5,0) <0}. Aset X of this form is called

separable.

Inversion sets are separable; take 6 € uD. And separable sets are

biclosed. But biclosed sets don’t have to be separable.




Separability: A related but distinct concept

Let 6 € VV with (8,0) # 0 for all 8 € ®*. Let
X ={Bedt:(B,0) <0}. Aset X of this form is called
separable.

Inversion sets are separable; take 6 € uD. And separable sets are

biclosed. But biclosed sets don’t have to be separable.

There is also a more general version called weakly separable.

Take a basis 0, 05, ..., 0, for VV.

o If (8,61) <0 put 8 € X;if (6,61) >0put 8¢ X. If
(B,01) = 0, go the next step.

o If (3,05) <0 put § € X;if (8,02) >0put 8¢ X. If
(B,02) = 0, go the next step ...

This is more robust than separability, but doesn’t make a big

difference.




A key example

Look at the affine symmetric group with n = 4. We will compute
(s152) V (8384).

Inv(s1sg) = {ea —e1, e3 —e1} and Inv(szsy) = {eq4 — €3, e5 — e3}.
What is

Inv(sys2) UInv(sssy)?




A key example

Look at the affine symmetric group with n = 4. We will compute
(s152) V (8384).

Inv(s1sg) = {ea —e1, e3 —e1} and Inv(szsy) = {eq4 — €3, e5 — e3}.
What is

Inv(sys2) UInv(sssy)?

Some elements of the closure:
eq —ep = (eq —e3) + (e3 —eq)

es —e3 = (e4 —e1) + (e5 — e3)




A key example

Look at the affine symmetric group with n = 4. We will compute
(s152) V (8384).

Inv(s1sg) = {ea —e1, e3 —e1} and Inv(szsy) = {eq4 — €3, e5 — e3}.

Inv(syse) UInv(sssy) =

{eb—ea ca <b, (a,0) = (1,3),(3,1),(1,2), (1,4), (3,4), (3,2) mod 4}.




A key example

Look at the affine symmetric group with n = 4. We will compute
(s152) V (8384).

Inv(s1sg) = {ea —e1, e3 —e1} and Inv(szsy) = {eq4 — €3, e5 — e3}.

Inv(sise) UlInv(sgsy) =

{eb—ea ca <b, (a,0) = (1,3),(3,1),(1,2), (1,4), (3,4), (3,2) mod 4}.

This is biclosed and deserves to be (s152) V (s354).
But it is not separable (or weakly separable)! Note that we have

ex ex Zx ZX




Progress with Grant Barkley: We’ve classified biclosed sets in

affine type and verified Dyer’s conjecture there.

Corollary of classification: All biclosed sets in rank three affine
type are weakly separable.




Open problem

Are biclosed sets in rank 3 always weakly separable?” What about
for the free Coxeter group?

s

>

The thing that we need to show is that, if we have four roots «, £,

v, 0 as above, and [ is a biclosed set, it is impossible to have «,
ve€ Il and B, 0 ¢ I. In other words, this is some sort of

“noncrossing” condition.




Second approach: Shards (Nathan Reading)




Lattice congruences

Let A be a finite* lattice; let ~ be an equivalence relation on A.

Then ~ is called a lattice congruence if u; ~ us and v ~ vy

implies u; V v1 ~ ug V vy and uy A vg ~ ug A vs.

* Finiteness is negotiable.




Lattice congruences

Let A be a finite lattice; let ~ be an equivalence relation on A.
Then ~ is called a lattice congruence if u; ~ us and v ~ vy

implies u; V v1 ~ ug V vy and uy A v ~ ug A vs.

A particularly important family of lattice congruences are the

Cambrian congruences. The Tamart congruence on S, is a

Cambrian congruence.

Cambrian congruences are what show up when using Coxeter
groups to describe cluster algebras, and when using Coxeter groups

to describe representation theory of quiver algebras.




Definition: A covering pair is a pair (u,v) of elements of A with

u < v such that there does not exist w with v < w < v.

In Coxeter groups, covering pairs correspond to (u,v) such that uD

and vD meet along a common facet.

Theorem: A lattice congruence is determined by the list of

covering pairs (u,v) for which u ~ v.




Definition: A covering pair is a pair (u,v) of elements of A with

u < v such that there does not exist w with v < w < v.

In Coxeter groups, covering pairs correspond to (u,v) such that uD

and vD meet along a common facet.

Theorem: A lattice congruence is determined by the list of

covering pairs (u,v) for which u ~ v.

Definition: Define two covering pairs (uy,v1) and (ug,v2) to be
equivalent if any congruence that collapses (uq,v1) also collapses
(ug,v2) and vice versa. Let III be the set of covering pairs up to

this equivalence.




Theorem (Le Conte de Poly-Barbut) Let W be a finite
Coxeter group. The elements of III are in bijection with the

following sets:

1. Join irreducible elements of W. Specifically, look at the pair

(j«, ) for each join irreducible j.

2. Meet irreducible elements of W. Specifically, look at the pair

(m, my) for each meet irreducible m.




Nathan Reading gave a third, polyhedral, way of describing III:

For each v € ®T, find all cases where v € Ryga + R+ /3 for a,
B € ®*. Cut v+ along the hyperplanes (Ra +R3)L. The regions of
this hyperplane arrangement are called shards of dimension .

They correspond to the elements of III crossing .
A




We make Reading’s same definition in infinite Coxeter groups:

In infinite type, there are more shards than there are

join/meet-irreducibles.




Theorem (S.-Thomas) There is a recursive description of shards:

e There is one shard of dimensions «;: the whole plane a,f.

e Suppose that § = s;(8’) with 8 € 8’ + Ryga;. Then the shard

arrangement in B+ is obtained by reflecting the shard

arrangement in (3’)* and adding in one more hyperplane,
(RB —|— ]RO&L‘)J‘.




Theorem (S.-Thomas) There is a recursive description of shards:

1

e There is one shard of dimensions «;: the whole plane «;-.

e Suppose that § = s;(8’) with 8 € 8’ + Ryga;. Then the shard

arrangement in B+ is obtained by reflecting the shard

arrangement in (3’)* and adding in one more hyperplane,
(RB —|— RO&L‘)J‘.

Theorem (S.-Thomas) There is also a representation theoretic
interpretation: Shards are the stability domains of certain modules
for the preprojective algebra (namely, real brick modules whose
domain of stability is (n — 1)-dimensional).




Work with Nathan Reading and Hugh Thomas

Let W be a finite Coxeter group. The elements of III are in
bijection with both:

1. Join irreducible elements of .
2. Meet irreducible elements of W.

Define partial orders — and < on III by the weak order on the
join irreducibles and the meet irreducibles; this also has an
interpretation in preprojective algebras. Define x — z if there

exists y with x — y — 2.

Theorem: (Reading-S.-Thomas) W is in bijection with pairs

(X,Y) of subsets of IIT which are maximal with respect to the
condition that there do not exist x € X and y € Y with x — y.
The dimensions of the shards in X and in Y are the inversions and

noninversions of W respectively.




Theorem: (Reading-S.-Thomas) W is in bijection with pairs
(X,Y) of subsets of IIT which are maximal with respect to the
condition that there do not exist x € X and y € Y with x — y.
The dimensions of the shards in X and in Y are the inversions and

noninversions of the element of W respectively.

Open Problem: Is there some way to impose similar relations —,
—, — on III in infinite types such that the pairs (X,Y) to give a
complete lattice.

Open Problem: In this context, If we take {dim 3 : 3 € X} and
{dim~ : v € Y}, do we get a biclosed set and its complement?

Open Problem: If we start with a biclosed set, we can naturally
associate two sets (X,Y) of shards to it. Can we say anything
about the pairs we get?




Thank Youl
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