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Agenda

•What is a Coxeter group?

•What is the weak order on a Coxeter group?

•Why should it be enlarged?

• How could it be enlarged: Geometry of roots

◦ Matthew Dyer’s conjectures

◦ Work with Grant Barkley

• How could it be enlarged: Lattice theory

◦ Nathan Reading’s theory of shards

◦ Work with Nathan Reading and Hugh Thomas
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Coxeter groups

A Coxeter group is generated by s1, s2, . . . , sr modulo relations:

s2i =1

(sisj)
mij=1 for some 2 ≤ mij ≤ ∞

Coxeter groups come with linear representations: There is a vector

space V with basis α1, α2, . . . , αr such that the Coxeter group acts

on V by a reflection, negating αi. Equivalently, W acts on V ∨ by a

reflection fixing α⊥i .
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The symmetric group Sn is generated by s1, s2, . . . , sn−1 where

si = (i i+ 1).
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The symmetric group Sn is generated by s1, s2, . . . , sn−1 where

si = (i i+ 1).

Roughly, take V = V ∨ = Rn and αi is ei+1 − ei.

More carefully, V = (1, 1, . . . , 1)⊥ ⊂ Rn and

V ∨ = Rn/R(1, 1, . . . , 1).
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The affine symmetric group is the group of bijections f : Z→ Z
obeying

f(a+ n) = f(a) + n
n∑

i=1

(
f(a)− a

)
= 0.

The generators are

si = · · · (i i+ 1)(i+ n i+ n+ 1)(i+ 2n i+ 2n+ 1) · · · .

Here is s1, with n = 5:
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Let V ∨1 be the (n+ 1)-dimensional vector space of infinite real

sequences (. . . , z−2, z−1, z0, z1, z2, . . .) such that there is a constant

d with zi+n = zi + d for all i. The affine symmetric group acts by

permuting the subscripts.

For a ∈ Z, let ea : V ∨1 → R be “evaluation at a”; these are vectors

in the dual space V1. So we have ea+n − ea = eb+n − eb for all a,

b ∈ Z. Put δ = ea+n − ea. So e1, e2, . . . , en, δ is a basis of V1.

Our αi is ei+1 − ei.

To be careful, V is the subset of V1 spanned by the ei − ej ; it’s dual

is V ∨1 modulo the constant sequences.
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• The free Coxeter group of rank 3 has

m12 = m13 = m23 =∞. So it is generated by s1, s2 and s3 modulo

the relations s21 = s22 = s23 = 1.

Geometrically, we can think of the group of symmetries of

hyperbolic plane generated by reflections over three lines which

meet at infinity.
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If we use the “hyperboloid” model for hyperbolic space, we can

think of this as symmetries of R3 preserving a quadratic form with

signature + +−.

The simple roots α1, α2, α3 are “space-like” vectors, sticking out to

the side of the lightcone.
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Weak order

A word si1si2 · · · si` in the si is called reduced if it is of minimal

length among words given this product.

The weak order is the partial order where u ≤ v if there is a

reduced word si1si2 · · · si` for v with a prefix si1si2 · · · sik with

product u.

s1s2s1

s2s1 s1s2

s2 s1

1
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s2 s1

1

We can give a more geometric description using the ideas of root

systems and inversions.
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Roots and inversions

Let Φ =
⋃

w∈W {wα1, wα2, . . . , wαn}. This is the root system .

Every root is either a positive root , meaning in

R≥0{α1, α2, . . . , αn}, or a negative root , meaning in

R≤0{α1, α2, . . . , αn}. So Φ = Φ+ t Φ−.

In the symmetric group, the positive roots are ej − ei for

1 ≤ i < j ≤ n.

In the affine symmetric group, the positive roots are ej − ei for

i < j, i 6≡ j mod n. Recall that ei+n − ei = δ.
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Let V ∨ be the dual vector space to V . Each β ∈ Φ+ defines a dual

hyperplane β⊥ in V ∨. Let D = {x ∈ V ∨ : 〈αi, x〉 > 0 for 1 ≤ i ≤ n}.
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Theorem The uD, for u ∈W , are always disjoint open simplicial

cones. In finite type, they are the regions of the complement of the

hyperplane arrangement. In general, they are precisely the regions

where 〈β, 〉 is positive for all but finitely many β ∈ Φ+.
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Theorem The uD, for u ∈W , are always disjoint open simplicial

cones. In finite type, they are the regions of the complement of the

hyperplane arrangement. In general, they are precisely the regions

where 〈β, 〉 is positive for all but finitely many β ∈ Φ+.

We define a positive root β to be an inversion of u if 〈β, 〉 is < 0

on uD.

Theorem u ≤ v in weak order if and only if Inv(u) ⊆ Inv(v).

14



Theorem If W is finite, then weak order is a complete lattice,

meaning that every subset X has a unique greatest lower bound∧
X (meet) and a unique least upper bound

∨
X (join).

In general, weak order is a complete meet semilattice. This means:

• Every nonempty subset X of W has a meet.

• If X is a bounded above subset of W , then it has a join.
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We would like to embed W into a large complete lattice.
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We would like to embed W into a large complete lattice. Why?

• Complete lattices are nice!
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We would like to embed W into a large complete lattice. Why?

• Coxeter groups describe cluster algebras (Fomin-Zelevinsky,

Reading-S., Reading-Stella, Buan-Marsh,

Buan-Marsh-Reiten-Todorov, . . . ). When the cluster algebra

has infinite type, the corresponding Coxeter group is infinite,

and existing methods only describe part of the cluster

complex/g-vector fan.

• Coxeter groups describe torsion classes of preprojective algebras

(Ingalls-Thomas, Mizuno, Iyama-Reiten-Reading-Thomas,

Demonet-IRRT, . . . ). When the preprojective algebra has

infinite type, the corresponding Coxeter group is infinite, and

existing methods only describe some of the torsion classes.

• Lam and Pylyavskyy, in their work on total positivity for loop

groups, put the affine weak orders into large semilattices, which

can be thought of as adding in the joins
∨
wi for any ascending

chain w1 < w2 < w3 < · · · .
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First approach: Biclosed sets (Matthew Dyer)
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Let I be a subset of Φ+. We say that I is:

• closed if, for any α, β, γ ∈ Φ with γ ∈ R>0α+ R>0β,

whenever α ∈ I and β ∈ I then γ ∈ I,

• coclosed if, for any α, β, γ ∈ Φ with γ ∈ R>0α+ R>0β,

whenever α 6∈ I and β 6∈ I then γ 6∈ I,

• biclosed if I is closed and coclosed.

Theorem: The finite biclosed sets are precisely the inversion sets.

Dyer’s big conjecture: The poset of biclosed sets of Φ+, ordered

by inclusion, is a complete lattice.
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Let I be a subset of Φ+. We say that I is:

• closed if, for any α, β, γ ∈ Φ with γ ∈ R>0α+ R>0β,

whenever α ∈ I and β ∈ I then γ ∈ I,

• coclosed if, for any α, β, γ ∈ Φ with γ ∈ R>0α+ R>0β,

whenever α 6∈ I and β 6∈ I then γ 6∈ I,

Immediate consequences of the definitions

The intersection of closed sets is closed. Every subset X ⊆ Φ+ is

contained in a unique smallest closed set X.

The union of coclosed sets is coclosed. Every subset X ⊆ Φ+

contains a unique largest coclosed set X◦.
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Dyer’s big conjecture: The poset of biclosed sets of Φ+, ordered

by inclusion, is a complete lattice.
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Dyer’s big conjecture: The poset of biclosed sets of Φ+, ordered

by inclusion, is a complete lattice.

A better formulation (Dyer): Let X be any collection of

biclosed subsets of Φ+. Then
⋃

I∈X I is coclosed and
(⋂

I∈X I
)◦

is

closed.

If this is true, then it is immediate that
⋃

I∈X I is
∨
X and(⋂

I∈X I
)◦

is
∧
X .
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Dyer’s big conjecture: The poset of biclosed sets of Φ+, ordered

by inclusion, is a complete lattice.

A better formulation (Dyer): Let X be any collection of

biclosed subsets of Φ+. Then
⋃

I∈X I is coclosed and
(⋂

I∈X I
)◦

is

closed.

If this is true, then it is immediate that
⋃

I∈X I is
∨
X and(⋂

I∈X I
)◦

is
∧
X .

Note that
⋃

I∈X I is coclosed and
⋂

I∈X I is closed. So we can ask

for even more:

Stronger conjecture (Dyer): If Y ⊂ Φ+ is coclosed then Y is

coclosed; if Z ⊂ Φ+ is closed then Z◦ is closed.
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Separability: A related but distinct concept

Let θ ∈ V ∨ with 〈β, θ〉 6= 0 for all β ∈ Φ+. Let

X = {β ∈ Φ+ : 〈β, θ〉 < 0}. A set X of this form is called

separable .

Inversion sets are separable; take θ ∈ uD. And separable sets are

biclosed. But biclosed sets don’t have to be separable.
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Separability: A related but distinct concept

Let θ ∈ V ∨ with 〈β, θ〉 6= 0 for all β ∈ Φ+. Let

X = {β ∈ Φ+ : 〈β, θ〉 < 0}. A set X of this form is called

separable .

Inversion sets are separable; take θ ∈ uD. And separable sets are

biclosed. But biclosed sets don’t have to be separable.

There is also a more general version called weakly separable .

Take a basis θ1, θ2, . . . , θr for V ∨.

• If 〈β, θ1〉 < 0 put β ∈ X; if 〈β, θ1〉 > 0 put β 6∈ X. If

〈β, θ1〉 = 0, go the next step.

• If 〈β, θ2〉 < 0 put β ∈ X; if 〈β, θ2〉 > 0 put β 6∈ X. If

〈β, θ2〉 = 0, go the next step . . .

This is more robust than separability, but doesn’t make a big

difference.
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A key example

Look at the affine symmetric group with n = 4. We will compute

(s1s2) ∨ (s3s4).

Inv(s1s2) = {e2 − e1, e3 − e1} and Inv(s3s4) = {e4 − e3, e5 − e3}.
What is

Inv(s1s2) ∪ Inv(s3s4)?
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A key example

Look at the affine symmetric group with n = 4. We will compute

(s1s2) ∨ (s3s4).

Inv(s1s2) = {e2 − e1, e3 − e1} and Inv(s3s4) = {e4 − e3, e5 − e3}.
What is

Inv(s1s2) ∪ Inv(s3s4)?

Some elements of the closure:

e4 − e1 = (e4 − e3) + (e3 − e1)

e8 − e3 = (e4 − e1) + (e5 − e3)

. . .
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A key example

Look at the affine symmetric group with n = 4. We will compute

(s1s2) ∨ (s3s4).

Inv(s1s2) = {e2 − e1, e3 − e1} and Inv(s3s4) = {e4 − e3, e5 − e3}.

Inv(s1s2) ∪ Inv(s3s4) ={
eb−ea : a < b, (a, b) ≡ (1, 3), (3, 1), (1, 2), (1, 4), (3, 4), (3, 2) mod 4

}
.
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A key example

Look at the affine symmetric group with n = 4. We will compute

(s1s2) ∨ (s3s4).

Inv(s1s2) = {e2 − e1, e3 − e1} and Inv(s3s4) = {e4 − e3, e5 − e3}.

Inv(s1s2) ∪ Inv(s3s4) ={
eb−ea : a < b, (a, b) ≡ (1, 3), (3, 1), (1, 2), (1, 4), (3, 4), (3, 2) mod 4

}
.

This is biclosed and deserves to be (s1s2) ∨ (s3s4).

But it is not separable (or weakly separable)! Note that we have

∈X︷ ︸︸ ︷
(e5 − e3) +

∈X︷ ︸︸ ︷
(e3 − e1) = δ =

6∈X︷ ︸︸ ︷
(e6 − e4) +

6∈X︷ ︸︸ ︷
(e4 − e2) .
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Progress with Grant Barkley: We’ve classified biclosed sets in

affine type and verified Dyer’s conjecture there.

Corollary of classification: All biclosed sets in rank three affine

type are weakly separable.
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Open problem

Are biclosed sets in rank 3 always weakly separable? What about

for the free Coxeter group?

The thing that we need to show is that, if we have four roots α, β,

γ, δ as above, and I is a biclosed set, it is impossible to have α,

γ ∈ I and β, δ 6∈ I. In other words, this is some sort of

“noncrossing” condition.
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Second approach: Shards (Nathan Reading)
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Lattice congruences

Let Λ be a finite∗ lattice; let ∼ be an equivalence relation on Λ.

Then ∼ is called a lattice congruence if u1 ∼ u2 and v1 ∼ v2
implies u1 ∨ v1 ∼ u2 ∨ v2 and u1 ∧ v1 ∼ u2 ∧ v2.

∗ Finiteness is negotiable.
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Lattice congruences

Let Λ be a finite lattice; let ∼ be an equivalence relation on Λ.

Then ∼ is called a lattice congruence if u1 ∼ u2 and v1 ∼ v2
implies u1 ∨ v1 ∼ u2 ∨ v2 and u1 ∧ v1 ∼ u2 ∧ v2.

A particularly important family of lattice congruences are the

Cambrian congruences. The Tamari congruence on Sn is a

Cambrian congruence.

Cambrian congruences are what show up when using Coxeter

groups to describe cluster algebras, and when using Coxeter groups

to describe representation theory of quiver algebras.

35



Definition: A covering pair is a pair (u, v) of elements of Λ with

u < v such that there does not exist w with u < w < v.

In Coxeter groups, covering pairs correspond to (u, v) such that uD

and vD meet along a common facet.

Theorem: A lattice congruence is determined by the list of

covering pairs (u, v) for which u ∼ v.
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Definition: A covering pair is a pair (u, v) of elements of Λ with

u < v such that there does not exist w with u < w < v.

In Coxeter groups, covering pairs correspond to (u, v) such that uD

and vD meet along a common facet.

Theorem: A lattice congruence is determined by the list of

covering pairs (u, v) for which u ∼ v.

Definition: Define two covering pairs (u1, v1) and (u2, v2) to be

equivalent if any congruence that collapses (u1, v1) also collapses

(u2, v2) and vice versa. Let X be the set of covering pairs up to

this equivalence.
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Theorem (Le Conte de Poly-Barbut) Let W be a finite

Coxeter group. The elements of X are in bijection with the

following sets:

1. Join irreducible elements of W . Specifically, look at the pair

(j∗, j) for each join irreducible j.

2. Meet irreducible elements of W . Specifically, look at the pair

(m,m∗) for each meet irreducible m.

38



Nathan Reading gave a third, polyhedral, way of describing X:

For each γ ∈ Φ+, find all cases where γ ∈ R>0α+ R>0β for α,

β ∈ Φ+. Cut γ⊥ along the hyperplanes (Rα+Rβ)⊥. The regions of

this hyperplane arrangement are called shards of dimension γ.

They correspond to the elements of X crossing γ⊥.
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We make Reading’s same definition in infinite Coxeter groups:

In infinite type, there are more shards than there are

join/meet-irreducibles.

40



Theorem (S.-Thomas) There is a recursive description of shards:

• There is one shard of dimensions αi: the whole plane α⊥i .

• Suppose that β = si(β
′) with β ∈ β′ + R>0αi. Then the shard

arrangement in β⊥ is obtained by reflecting the shard

arrangement in (β′)⊥ and adding in one more hyperplane,

(Rβ + Rαi)
⊥.
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Theorem (S.-Thomas) There is a recursive description of shards:

• There is one shard of dimensions αi: the whole plane α⊥i .

• Suppose that β = si(β
′) with β ∈ β′ + R>0αi. Then the shard

arrangement in β⊥ is obtained by reflecting the shard

arrangement in (β′)⊥ and adding in one more hyperplane,

(Rβ + Rαi)
⊥.

Theorem (S.-Thomas) There is also a representation theoretic

interpretation: Shards are the stability domains of certain modules

for the preprojective algebra (namely, real brick modules whose

domain of stability is (n− 1)-dimensional).
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Work with Nathan Reading and Hugh Thomas

Let W be a finite Coxeter group. The elements of X are in

bijection with both:

1. Join irreducible elements of W .

2. Meet irreducible elements of W .

Define partial orders � and ↪→ on X by the weak order on the

join irreducibles and the meet irreducibles; this also has an

interpretation in preprojective algebras. Define x→ z if there

exists y with x� y ↪→ z.

Theorem: (Reading-S.-Thomas) W is in bijection with pairs

(X,Y ) of subsets of X which are maximal with respect to the

condition that there do not exist x ∈ X and y ∈ Y with x→ y.

The dimensions of the shards in X and in Y are the inversions and

noninversions of W respectively.
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Theorem: (Reading-S.-Thomas) W is in bijection with pairs

(X,Y ) of subsets of X which are maximal with respect to the

condition that there do not exist x ∈ X and y ∈ Y with x→ y.

The dimensions of the shards in X and in Y are the inversions and

noninversions of the element of W respectively.

Open Problem: Is there some way to impose similar relations �,

↪→, → on X in infinite types such that the pairs (X,Y ) to give a

complete lattice.

Open Problem: In this context, If we take {dimβ : β ∈ X} and

{dim γ : γ ∈ Y }, do we get a biclosed set and its complement?

Open Problem: If we start with a biclosed set, we can naturally

associate two sets (X,Y ) of shards to it. Can we say anything

about the pairs we get?
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Thank You!
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