Calculus I Final Exam - Offline (in-person)
 Howard University Mathematics Department

December 5, 2023
MUST GIVE STEP BY STEP EXPLANATIONS TO GET CREDIT FOR ANSWERS.
No calculators or electronic devices are permitted.

PART I: Do all three problems. EACH WORTH 24 POINTS.

1. Do the following for the function $f(x)=(x+2)(x-2)^{3}$.
(a) Show that $f^{\prime}(x)=4(x+1)(x-2)^{2}$ and $f^{\prime \prime}(x)=12 x(x-2)$.
(b) Find the open interval(s) where f is increasing and/or decreasing.
(c) Find any local maximum and/or minimum values of f.
(d) Find the open interval(s) where f is concave up and/or concave down.
(e) Find the coordinate(s) of any inflection points of f.
(f) Use the information in parts (b) through (e) to sketch the graph of $y=f(x)$ that shows the information obtained in (b) through (e).
2. Consider $f(x)=\frac{1}{x-1}$.
(a) Using the limit definition of the derivative, find the slope of the line tangent to $f(x)$ at $\left(3, \frac{1}{2}\right)$.
(b) Give an equation for the tangent line at $\left(3, \frac{1}{2}\right)$.
3. The region R is bounded by the x-axis, the curve $y=x^{2}$, the line $x=0$, and the line $x=3$.
(a) Approximate the area of R with the sum of the areas of the following three rectangles. These three rectangles are sitting on the x-axis, they have equal width, and their upper-right corners are on the curve $y=x^{2}$. Simplify your answer.
(b) Approximate the area of R with the sum of the areas of the following n rectangles. These n rectangles are sitting on the x-axis, they have equal width, and their upper-right corners are on the curve $y=x^{2} \quad\left(\right.$ Hint: $\left.\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}\right)$.
(c) Evaluate $\int_{0}^{3} x^{2} d x$ by taking the limit of your previous answer as $n \rightarrow \infty$. Simplify your answer.

PART II: Choose any 8 problems. EACH WORTH 16 POINTS.

1. Let f be a function defined as follows:

$$
f(x)= \begin{cases}x^{2}+3 x, & \text { if } x<1 \\ 4, & \text { if } x=1 \\ 5 x-2, & \text { if } x>1\end{cases}
$$

(a) Find $\lim _{x \rightarrow 1^{-}} f(x)$.
(b) Find $\lim _{x \rightarrow 1^{+}} f(x)$.
(c) Find $\lim _{x \rightarrow 1} f(x)$ if it exists. If it does not exist, explain the reason.
(d) Is f continuous at $x=1$? Explain the reason to your answer.
2. The volume of a growing spherical cell is $V=\frac{4}{3} \pi r^{3}$. Find the instantaneous rate of change of the volume with respect to the radius when $r=5 \mu \mathrm{~m}$.
3. Find the horizontal and vertical asymptotes of the curve $f(x)=\frac{3 x^{2}+4 x+8}{x^{2}-2 x-15}$. Justify your work for each by computing a limit.
4. (a) Find the linearization (linear approximation) of $f(x)=\frac{1}{2 x-1}$ at $a=0$.
(b) Using your answer from part (a) approximate $f(0.1)$.
5. The base of a triangle is shrinking at a rate of $1 \mathrm{~cm} / \mathrm{min}$ and the height of the triangle is increasing at a rate of $5 \mathrm{~cm} / \mathrm{min}$. Find the rate at which the area of the triangle changes when the height is 22 cm and the base is 10 cm .
6. The position $y=f(t)$ of a biker traveling along a straight road is a differentiable function of time t for $t>0$. The table below shows the position of the biker at various times.

$t(\mathrm{~h})$	2	4	6	8	10	12
$y(\mathrm{mi})$	2	32	22	25	30	34

(a) Identify one time interval $[a, b]$ in the table for which the average velocity is -5 miles per hour. Briefly explain why f must be continuous on $[a, b]$.
(b) Explain why the Mean Value Theorem applies to f over $[a, b]$.
(c) Show that there is some time c such that $a<c<b$, for which the instantaneous velocity $v(c)=-5$ miles per hour.
7. Consider the graphs of $f(x)$ and $g(x)$. Define $u(x)=f(x) \cdot g(x)$ and $v(x)=g(f(x))$. Find each of the following derivative values, if they exist. If a particular value does not exist, simply write DNE.

a) $u^{\prime}(1)$
b) $u^{\prime}(2)$
c) $v^{\prime}(1)$
d) $v^{\prime}(3)$
8. Evaluate the following limits using an appropriate method:
a) $\lim _{x \rightarrow 5^{+}} \frac{8}{x-5}$
b) $\lim _{x \rightarrow 5^{-}} \frac{8}{x-5}$
c) $\lim _{x \rightarrow 1} \frac{2 x^{2}+4 x-5}{5 x-3}$
d) $\lim _{x \rightarrow 0} \frac{\tan 4 x}{\sin 3 x}$
9. For each of the following, find $\frac{d y}{d x}$.
a) $2 x^{2}+x y^{2}+2 y^{2}=5$
b) $y=\frac{\sin \left(x^{2}\right)}{\arctan (x)}+e^{2 x}$
c) $y=\sqrt{\frac{x-1}{x^{4}+1}}$
10. Find the point on the curve $y=\frac{x^{2}}{6}$ which is closest to $(12,3)$ using optimization method and justify your solution using the Second Derivative Test.
11. (a) Find an antiderivative of $f(x)=\frac{1}{\cos ^{2} x}+\frac{x^{2} e^{x}+4 x^{3}}{x^{2}}-\frac{6}{x^{2}+1}$ with $F(0)=2$.
(b) Find the following indefinite integrals:
i $\int e^{x}-\sin (x) d x$
ii $\int \sqrt{x}+\frac{1}{x^{2}} d x$
12. (a) Compute the following definite integrals by using the Fundamental Theorem of Calculus:
i. $\int_{-1}^{2}\left(x^{3}+2 x-1\right) d x$
ii $\int_{1}^{e} \frac{3}{x} d x$
iii $\int_{-\pi / 2}^{\pi / 2} \sin (x) d x$
(b) Use the u-substitution technique to find the following indefinite integrals:
i $\int \sqrt{3 x+2} d x$
ii $\int \frac{\ln (x)}{x} d x$

