$\begin{array}{c} \text{Midterm } \#3,\,11/29 \\ \text{Math 156 (Calculus I), Fall 2023} \end{array}$

Each problem is worth 10 points, for a total of 50 points. You have 50 minutes to do the exam. Remember to *show your work* on all problems!

1. For each of the following functions f(x), write an anti-derivative F(x) of f(x):

(a)
$$f(x) = 3x^2 + x + 2$$

(b)
$$f(x) = e^x + \sin(x)$$

(c)
$$f(x) = \frac{3}{x}$$

(d)
$$f(x) = \sqrt{x}$$

- 2. Give an approximation for the area under the curve $y = x^2 + 1$ from x = -1 to x = 2 by using 3 rectangles (of equal width) whose heights are determined by the intervals' left endpoints.
- 3. Compute the following definite integrals using the Fundamental Theorem of Calculus:

(a)
$$\int_{-1}^{2} x^2 + 1 \, dx$$

(b)
$$\int_0^{\pi} \cos(x) \ dx$$

(c)
$$\int_0^{\ln(3)} e^x dx$$

- 4. The velocity (in meters per second) at time t (in seconds) of a car moving along a 1-dimesional road is given by the function v(t) = 2t. What distance does the car travel between time t = 2 seconds and time t = 4 seconds?
- 5. Compute the following indefinite integrals using the u-substitution technique:

(a)
$$\int x e^{x^2+5} dx$$

(b)
$$\int \frac{\cos(x)}{\sin(x)} dx$$
 [Hint: let $u = \sin(x)$.]