Midterm \#3, 11/29
 Math 156 (Calculus I), Fall 2023

Each problem is worth 10 points, for a total of 50 points. You have 50 minutes to do the exam. Remember to show your work on all problems!

1. For each of the following functions $f(x)$, write an anti-derivative $F(x)$ of $f(x)$:
(a) $f(x)=3 x^{2}+x+2$
(b) $f(x)=e^{x}+\sin (x)$
(c) $f(x)=\frac{3}{x}$
(d) $f(x)=\sqrt{x}$
2. Give an approximation for the area under the curve $y=x^{2}+1$ from $x=-1$ to $x=2$ by using 3 rectangles (of equal width) whose heights are determined by the intervals' left endpoints.
3. Compute the following definite integrals using the Fundamental Theorem of Calculus:
(a) $\int_{-1}^{2} x^{2}+1 d x$
(b) $\int_{0}^{\pi} \cos (x) d x$
(c) $\int_{0}^{\ln (3)} e^{x} d x$
4. The velocity (in meters per second) at time t (in seconds) of a car moving along a 1-dimesional road is given by the function $v(t)=2 t$. What distance does the car travel between time $t=2$ seconds and time $t=4$ seconds?
5. Compute the following indefinite integrals using the u-substitution technique:
(a) $\int x e^{x^{2}+5} d x$
(b) $\int \frac{\cos (x)}{\sin (x)} d x$
[Hint: let $u=\sin (x)$.]
