# Midterm \#3 Study Guide <br> Math 156 (Calculus I), Fall 2023 

1. Area under the curve [§5.1, 5.2]
(a) can approximate area under the curve $y=f(x)$ from $x=a$ to $x=b$ by the rectangle (Riemann) sum $A_{n}=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$, where $\Delta x=\frac{b-a}{n}, x_{i}=a+i \cdot \Delta x$ for $i=0,1, \ldots, n$, and any choice of sample points $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$
(b) usual choices: $x_{i}^{*}=x_{i-1}$ (left endpoints $A_{n}=L_{n}$ ); $x_{i}^{*}=x_{i}$ (right endpoints $A_{n}=R_{n}$ ); or $x^{*}=\frac{x_{i}+x_{i-1}}{2}$ (midpoints of intervals)
(c) if $f(x)$ is continuous, all give same $\operatorname{limit} A=\lim _{n \rightarrow \infty} A_{n}$, the true area under the curve
2. Definite integrals [ $£ 5.2,5.3]$
(a) definite integral $\int_{a}^{b} f(x) d x$ is the area "under" the curve $y=f(x)$ from $x=a$ to $x=b$ as defined above: $A=\lim _{n \rightarrow \infty} A_{n}$; this counts area below the $x$-axis negatively
(b) Fundamental Theorem of Calculus: $\left.\int_{a}^{b} f(x) d x=F(b)-F(a)=\int f(x) d x\right]_{a}^{b}$, where $F(x)=\int f(x) d x$ is an anti-derivative of $f(x)$
(c) another way to think of FTC: integral of rate of change is net change (e.g., integral of velocity is displacement)
3. Anti-derivatives, a.k.a. indefinite integrals [§4.9, 5.4, 5.5]
(a) basic anti-derivatives/indefinite integrals: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C, \int e^{x} d x=e^{x}+C$, $\int \frac{1}{x} d x=\ln (x)+C, \int \sin (x) d x=-\cos (x)+C, \int \cos (x) d x=\sin (x)+C$
(b) integral is linear: $\int a \cdot f(x)+b \cdot g(x) d x=a \int f(x) d x+b \int g(x) d x$ for $a, b \in \mathbb{R}$
(c) the $u$-substitution technique: can treat the " $d x$ " in an integral as a differential, so if we let $u=g(x)$ then we can substitute $d u=g^{\prime}(x) d x$ in an integral
