Final Exam Study Guide Math 157 (Calculus II), Spring 2024

1. Geometric applications of integrals [86.1, 6.2, 6.3, 8.1, 8.2]
(a) Area between curves [§6.1]: area between $y=f(x)$ and $y=g(x)$ is $\int_{a}^{b}|f(x)-g(x)| d x$.
(b) Volume of general solid [$\S 6.2$]: if $A(x)=$ area of cross-section, then volume is $\int_{a}^{b} A(x) d x$.
(c) Volume of solid of revolution [§6.2, 6.3]: "disks/washers" \& "cylindrical shells" methods. For region below curve $y=f(x)$ from $x=a$ to $x=b$:
i. rotated around x-axis, "disks method" gives volume $=\int_{a}^{b} \pi f(x)^{2} d x$;
ii. rotated around y-axis, "shells method" gives volume $=\int_{a}^{b} 2 \pi f(x) x d x$.
(d) Arc lengths of curves [§8.1]: length of $y=f(x)$ from $x=a$ to $x=b$ is $\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.
(e) Area of surface of revolution [§8.2]:
i. for $y=f(x)$ from $x=a$ to $x=b$ rotated about x-axis, area is $\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$;
ii. for $x=g(y)$ from $y=c$ to $y=d$ rotated about x-axis, area is $\int_{c}^{d} 2 \pi y \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y$.
2. Other applications of integrals $[\S 6.4,6.5]$
(a) Work [§6.4]: if $F(x)=$ force as function of distance, then work done is $W=\int_{a}^{b} F(x) d x$.
(b) Average of function [§6.5]: the average of $f(x)$ from $x=a$ to $x=b$ is $\frac{1}{b-a} \int_{a}^{b} f(x) d x$.
3. Techniques for computing integrals [§7.1, 7.2, 7.3, 7.4, 7.5]
(a) Integration by parts [§7.1]: $\int u d v=u v-\int v d u$; choose u using "LIATE" rule
(b) Trigonometric integrals [§7.2]: for $\int \sin ^{n}(x) \cos ^{m}(x) d x$, use the Pythagorean identity $\sin ^{2}(x)+\cos ^{2}(x)=1$ to isolate single factor of $\cos (x) d x$ or $\sin (x) d x$, then do a u-sub.
(c) Trigonometric substitution [§7.3]:
i. for $a^{2}-x^{2} \Rightarrow \operatorname{sub} x=a \sin (\theta), d x=a \cos (\theta) d \theta$, and use $1-\sin ^{2}(\theta)=\cos ^{2}(\theta)$;
ii. for $a^{2}+x^{2} \Rightarrow \operatorname{sub} x=a \tan (\theta), d x=a \sec ^{2}(\theta) d \theta$, and use $1+\tan ^{2}(\theta)=\sec ^{2}(\theta)$.
(d) Integrating rational functions by partial fractions [§7.4]: find roots of denominator $Q(x)$ and solve system of equations to write $P(x) / Q(x)=A /(x-a)+B /(x-b)+\ldots+Z /(x-z)$ and use $\int A /(x-a) d x=A \ln (x-a)$; for repeated roots do $A_{1} /(x-a)+A_{2} /(x-a)^{2}+\cdots$.
4. Other concepts related to integration [§7.7, 7.8]
(a) Approximating definite integrals [§7.7]: two good approximations of $\int_{a}^{b} f(x) d x$ are
i. midpoint approximation $M_{n}=\sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x$ where $\bar{x}_{i}=\frac{x_{i-1}+x_{i}}{2}$;
ii. trapezoid approximation $T_{n}=\frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)$.
(b) Improper integrals [§7.8]: $\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x$, et cetera.
5. Parametrized curves [§10.1, 10.2]
(a) Curve of form $x=f(t)$ and $y=g(t)$ for some auxiliary variable t ("time") [§10.1]
(b) Slope of tangent [$\S 10.2]$ to curve given by chain rule: $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{g^{\prime}(t)}{f^{\prime}(t)}$
(c) Arc length [§10.2] is $\int_{a}^{b} \sqrt{\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d x}{d t}\right)^{2}} d t=\int_{a}^{b} \sqrt{g^{\prime}(t)^{2}+f^{\prime}(t)^{2}} d t$
6. Polar coordinates and polar curves [$\S 10.3,10.4]$
(a) Cartesian vs. polar [§10.3]: $(x, y)=(r \cos \theta, r \sin \theta)$ and $(r, \theta)=\left(\sqrt{x^{2}+y^{2}}, \arctan \left(\frac{y}{x}\right)\right)$
(b) Area inside [$\$ 10.4]$ polar curve $r=f(\theta)$ for $\alpha \leq \theta \leq \beta$ is $\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta=\int_{\alpha}^{\beta} \frac{1}{2} f(\theta)^{2} d \theta$
(c) Slope of tangent [$\S 10.4$] to polar curve $r=f(\theta)$ given by chain and product rules:

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{\frac{d}{d \theta}(r \sin \theta)}{\frac{d}{d \theta}(r \cos \theta)}=\frac{f(\theta) \cos \theta+f^{\prime}(\theta) \sin \theta}{f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta}
$$

(d) Arc length [§10.4] of polar curve $r=f(\theta)$ is $\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{\alpha}^{\beta} \sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}} d \theta$
7. Sequences and series [$£ 11.1,11.2,11.3,11.4,11.5,11.6,11.7]$
(a) Sequence $\left\{a_{n}\right\}_{n=1}^{\infty}=a_{1}, a_{2}, \ldots$ is list of numbers, $\lim _{n \rightarrow \infty} a_{n}$ defined like $\lim _{x \rightarrow \infty} f(x)$ [§11.1]
(b) Series $\sum_{n}^{\infty} a_{n}$ is "infinite sum" $a_{1}+a_{2}+\cdots$ of terms a_{n}; its value is $s=\lim _{n \rightarrow \infty} s_{n}$ where $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$ is the nth partial sum [§11.2]
(c) Important series: geometric series [§11.2] $\sum_{n=1}^{\infty} a r^{n-1}$ converges if and only if $|r|<1$ (and $=\frac{a}{1-r}$ if it converges); p-series [§11.3] $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if and only if $p>1$
(d) Many tests for convergence / divergence of series:
i. (Divergence test [§11.2]) If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, series $\sum_{n}^{\infty} a_{n}$ diverges.
ii. (Integral test [§11.3]) If $f(x)$ continuous, decreasing, and positive, with $a_{n}=f(n)$, then $\sum_{n}^{\infty} a_{n}$ converges if and only if $\int_{1}^{\infty} f(x) d x$ converges. In this case, have error bounds for remainder $R_{n}=s-s_{n}: \int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x$.
iii. (Comparison tests [§11.4]) If $\sum_{n}^{\infty} b_{n}$ converges $\& a_{n} \leq b_{n}$, then $\sum_{n}^{\infty} a_{n}$ converges. If $\sum_{n}^{\infty} b_{n}$ diverges $\& a_{n} \geq b_{n}$, then $\sum_{n}^{\infty} a_{n}$ diverges. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists and is $\neq 0$, then $\sum_{n}^{\infty} a_{n}$ converges if and only if $\sum_{n}^{\infty} b_{n}$ converges.
iv. (Alternating series test [§11.5]) Alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ converges as long as $b_{n+1} \leq b_{n}$ and $\lim _{n \rightarrow \infty} b_{n}=0$. In this case, have error bound: $\left|R_{n}\right| \leq b_{n+1}$.
v. (Ratio test [§11.6]) For series $\sum_{n=1}^{\infty} a_{n}$, let $L=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$. If $L<1$, series converges. If $L>1$ (including ∞), series diverges. If $L=1$, test is inconclusive.
8. Power series and Taylor series [$\$ 11.8,11.9,11.10,11.11]$
(a) The ratio test tells us that any power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has a radius of convergence R such that it converges when $|x-a|<R$ and diverges when $|x-a|>R$ [§11.8]
(b) Power series representations of functions $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$; getting a representation for one function from another via algebraic manipulations (like substitution) [§11.9]
(c) Differentiate, integrate, and multiply power series like they are polynomials [§11.9, 11.10]
(d) Taylor series of $f(x)$ at $x=a$ is $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$, where $f^{(n)}$ is nth derivative [§11.10]
(e) Important Taylor series [§11.10]: $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}(R=1) ; \quad e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}(R=\infty)$; $\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n-1} x^{2 n+1}}{(2 n+1)!}(R=\infty) ; \quad \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \quad(R=\infty)$
(f) Taylor polynomial $T_{n}(x)$: nth partial sum of series; $f(x) \approx T_{n}(x)$ if $x \approx a[\S 11.10,11.11]$

