Midterm \#2, 3/27
 Math 157 (Calculus II), Spring 2024

Each problem is worth 10 points, for a total of 50 points. You have 50 minutes to do the exam. Remember to show your work on all problems!

1. Write, but do not attempt to evaluate, a definite integral which computes the arc length of the curve $y=x e^{x}$ from $x=0$ to $x=1$.
2. Compute the surface area of the surface obtained by rotating the curve $y=\sqrt{1-x^{2}}$ from $x=0$ to $x=\frac{1}{2}$ about the x-axis.
3. Consider the parametrized curve given by $x=t^{2}-1$ and $y=t^{3}+t$ for $-\infty<t<\infty$. Compute the slope of the tangent to this curve at the point $(x, y)=(0,2)$.
4. Consider the polar curve given by $r=\sqrt{\theta(\pi-2 \theta)}$ for $0 \leq \theta \leq \frac{\pi}{2}$. Compute the area inside of this curve.
5. Consider the polar curve given by $r=\sin (\theta)+\cos (\theta)$ for $0 \leq \theta \leq \pi$. Compute the slope of the tangent to this curve (i.e., $\frac{d y}{d x}$) when $\theta=0$.
