Midterm \#2 Study Guide Math 157 (Calculus II), Spring 2024

1. More geometric applications of integrals [§8.1, 8.2]
(a) Arc lengths of curves [§8.1]: length of $y=f(x)$ from $x=a$ to $x=b$ is $\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.
(b) Area of surface of revolution [§8.2]:
i. for $y=f(x)$ from $x=a$ to $x=b$ rotated about x-axis, area is $\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$;
ii. for $y=f(x)$ from $x=a$ to $x=b$ rotated about y-axis, area is $\int_{a}^{b} 2 \pi x \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.
2. Parametrized curves [§10.1, 10.2]
(a) Curve of form $x=f(t)$ and $y=g(t)$ for some auxiliary variable t ("time") [§10.1]
(b) Slope of tangent [$\S 10.2$] to curve given by chain rule: $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{g^{\prime}(t)}{f^{\prime}(t)}$
(c) Arc length [§10.2] is $\int_{a}^{b} \sqrt{\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d x}{d t}\right)^{2}} d t=\int_{a}^{b} \sqrt{g^{\prime}(t)^{2}+f^{\prime}(t)^{2}} d t$
3. Polar coordinates and polar curves [$\$ 10.3,10.4]$
(a) Cartesian vs. polar [§10.3]: $(x, y)=(r \cos \theta, r \sin \theta)$ and $(r, \theta)=\left(\sqrt{x^{2}+y^{2}}, \arctan \left(\frac{y}{x}\right)\right)$
(b) Area inside [§10.4] polar curve $r=f(\theta)$ for $\alpha \leq \theta \leq \beta$ is $\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta=\int_{\alpha}^{\beta} \frac{1}{2} f(\theta)^{2} d \theta$
(c) Slope of tangent [$\S 10.4$] to polar curve $r=f(\theta)$ given by chain and product rules:

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{\frac{d}{d \theta}(r \sin \theta)}{\frac{d}{d \theta}(r \cos \theta)}=\frac{f(\theta) \cos \theta+f^{\prime}(\theta) \sin \theta}{f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta}
$$

(d) Arc length [§10.4] of polar curve $r=f(\theta)$ is $\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{\alpha}^{\beta} \sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}} d \theta$

