Midterm \#3 Study Guide Math 157 (Calculus II), Spring 2024

1. Sequences and series $[\S 11.1,11.2,11.3,11.4,11.5,11.6,11.7]$
(a) Sequence $\left\{a_{n}\right\}_{n=1}^{\infty}=a_{1}, a_{2}, \ldots$ is list of numbers, $\lim _{n \rightarrow \infty} a_{n}$ defined like $\lim _{x \rightarrow \infty} f(x)$ [§11.1]
(b) Series $\sum_{n}^{\infty} a_{n}$ is "infinite sum" $a_{1}+a_{2}+\cdots$ of terms a_{n}; its value is $s=\lim _{n \rightarrow \infty} s_{n}$ where $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$ is the nth partial sum [§11.2]
(c) Important series: geometric series [§11.2] $\sum_{n=1}^{\infty} a r^{n-1}$ converges if and only if $|r|<1$ (and $=\frac{a}{1-r}$ if it converges); p-series [§11.3] $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if and only if $p>1$
(d) Many tests for convergence / divergence of series:
i. (Divergence test [§11.2]) If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, series $\sum_{n}^{\infty} a_{n}$ diverges.
ii. (Integral test [§11.3]) If $f(x)$ continuous, decreasing, and positive, with $a_{n}=f(n)$, then $\sum_{n}^{\infty} a_{n}$ converges if and only if $\int_{1}^{\infty} f(x) d x$ converges. In this case, have error bounds for remainder $R_{n}=s-s_{n}: \int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x$.
iii. (Comparison tests [§11.4]) If $\sum_{n}^{\infty} b_{n}$ converges \& $a_{n} \leq b_{n}$, then $\sum_{n}^{\infty} a_{n}$ converges. If $\sum_{n}^{\infty} b_{n}$ diverges \& $a_{n} \geq b_{n}$, then $\sum_{n}^{\infty} a_{n}$ diverges. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists and is $\neq 0$, then $\sum_{n}^{\infty} a_{n}$ converges if and only if $\sum_{n}^{\infty} b_{n}$ converges.
iv. (Alternating series test [§11.5]) Alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ converges as long as $b_{n+1} \leq b_{n}$ and $\lim _{n \rightarrow \infty} b_{n}=0$. In this case, have error bound: $\left|R_{n}\right| \leq b_{n+1}$.
v. (Ratio test [§11.6]) For series $\sum_{n=1}^{\infty} a_{n}$, let $L=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$. If $L<1$, series converges. If $L>1$ (including ∞), series diverges. If $L=1$, test is inconclusive.
2. Power series and Taylor series $[\S 11.8,11.9,11.10,11.11]$
(a) The ratio test tells us that any power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has a radius of convergence R such that it converges when $|x-a|<R$ and diverges when $|x-a|>R[\S 11.8]$
(b) Power series representations of functions $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$; getting a representation for one function from another via algebraic manipulations (like substitution) [§11.9]
(c) Differentiate, integrate, and multiply power series like they are polynomials [§11.9, 11.10]
(d) Taylor series of $f(x)$ at $x=a$ is $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$, where $f^{(n)}$ is nth derivative [§11.10]
(e) Important Taylor series [§11.10]: $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}(R=1) ; \quad e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}(R=\infty)$; $\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n-1} x^{2 n+1}}{(2 n+1)!}(R=\infty) ; \quad \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \quad(R=\infty)$
(f) Taylor polynomial $T_{n}(x)$: nth partial sum of series; $f(x) \approx T_{n}(x)$ if $x \approx a[\S 11.10,11.11]$
