$$
\begin{gathered}
\text { Quiz \#10, 4/11 } \\
\text { Math } 157 \text { (Calculus II), Spring } 2024
\end{gathered}
$$

Problem 1 is worth 6 points, and Problem 2 is worth 4 points, for a total of 10 points. Remember to show your work on all problems!

1. Consider the series $s=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$. Let $s_{n}=\sum_{k=1}^{n} \frac{1}{k^{3}}$ be the nth partial sum for this series.
(a) Compute s_{2}, the second partial sum, as an estimate for the true value s of the series.
(b) Let $R_{2}=s-s_{2}$ denote the error of your estimate. Compute upper and lower bounds on this error. Hint: recall that $\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x$ for the appropriate $f(x)$.
2. For each of the following series, decide if it converges or diverges. Explain your answer.
(a) $\sum_{n=1}^{\infty} \frac{4 n^{2}-n+4}{3 n^{2}+3 n-1}$
(Hint: look at the limit of the terms.)
(b) $\sum_{n=1}^{\infty} \frac{1}{3^{n}+1}$
(Hint: compare to a series you know.)
(c) $\sum_{n=1}^{\infty} \frac{2}{2 n-1}$
(Hint: compare to a series you know.)
(d) $\sum_{n=1}^{\infty} \frac{2}{2 n^{2}-1}$
(Hint: compare to a series you know.)
