Quiz #10, 4/11Math 157 (Calculus II), Spring 2025

Problem 1 is worth 6 points, and Problem 2 is worth 4 points, for a total of 10 points. Remember to *show your work* on all problems!

1. Consider the series
$$s = \sum_{n=1}^{\infty} \frac{1}{n^3}$$
. Let $s_n = \sum_{k=1}^n \frac{1}{k^3}$ be the *n*th partial sum for this series.

- (a) Compute s_2 , the second partial sum, as an estimate for the true value s of the series.
- (b) Let $R_2 = s s_2$ denote the error of your estimate. Compute upper and lower bounds on this error. **Hint**: recall that $\int_{n+1}^{\infty} f(x) dx \leq R_n \leq \int_n^{\infty} f(x) dx$ for the appropriate f(x).

2. For each of the following series, decide if it converges or diverges. Explain your answer.

(a) $\sum_{n=1}^{\infty} \frac{3n^2 - 4n - 3}{2n^2 + n + 6}$	(Hint: look at the limit of the terms.)
(b) $\sum_{n=1}^{\infty} \frac{1}{3^n + 2}$	(Hint: compare to a series you know.)
(c) $\sum_{n=1}^{\infty} \frac{2}{2n-1}$	(Hint: compare to a series you know.)
(d) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$	(Hint: compare to a series you know.)