Final Exam Study Guide Math 181 (Discrete Structures), Spring 2024

1. Sets [§1.1]
(a) sets of numbers (integers \mathbb{Z} and real numbers \mathbb{R}), set-builder notation, subsets $(A \subseteq B)$
(b) operations of union $(A \cup B)$, intersection $(A \cap B)$, difference $(A \backslash B)$, complement (A^{c})
(c) representing sets via Venn diagrams
(d) ordered pairs (x, y) and the (Cartesian) product $X \times Y$ of two sets X and Y
2. Logical propositions [$11.2,1.3]$
(a) operations of "or" $(p \vee q)$, "and" $(p \wedge q)$, "not" $(\neg p)$
(b) truth tables for compound propositions
(c) conditional a.k.a. implication a.k.a. "if... then..." $(p \rightarrow q)$
(d) biconditionals ($p \leftrightarrow q$) and logical equivalence (\equiv)
(e) converse $q \rightarrow p$ and contrapositive $\neg q \rightarrow \neg p$ of an implication $p \rightarrow q$ (contrapositive is logically equivalent to original implication; converse is not!)
3. Logical arguments [§1.4]
(a) converting an argument from words to symbolic form and vice-versa
(b) proving validity using truth tables
(c) proving validity using the rules of inference and logical equivalences
(d) common forms of invalid arguments a.k.a. fallacies
4. Quantifiers [$\S 1.5,1.6]$
(a) propositional formulas $(P(x))$ and domains of discourse (D)
(b) universal $(\forall x P(x))$ and existential $(\exists x P(x))$ quantifiers
(c) DeMorgan's Laws: $\neg(\forall x P(x)) \equiv \exists x \neg P(x)$ and $\neg(\exists x P(x)) \equiv \forall x \neg P(x)$
(d) nested quantifiers and order of quantifiers $(\forall x \exists y P(x, y) \not \equiv \exists y \forall x P(x, y))$
5. Proofs [§2.1]
(a) two basic mathematical systems: the theory of integers; the theory of sets
(b) direct proofs for theorems of form " $\forall x_{1}, \ldots, x_{n}$ if $P\left(x_{1}, \ldots, x_{n}\right)$ then $Q\left(x_{1}, \ldots, x_{n}\right)$ "
(c) counterexamples to universally quantified statements
6. Indirect proofs [§2.2]
(a) proof by contrapositive: to prove $p \rightarrow q$, prove $\neg q \rightarrow \neg p$ instead
(b) proof by contradiction: assume negation of statement, and deduce contradiction $(r \wedge \neg r)$
7. Mathematical induction [§2.4, 2.5]
(a) basic structure of inductive proofs: base case $P(1)$, and induction step $P(n) \rightarrow P(n+1)$
(b) proving $\forall\left(n \in \mathbb{Z}_{>0}\right) P(n)$ by induction, especially when $P(n)$ is an algebraic formula
(c) finding patterns to guess formulas involving n which can then be proved by induction
8. Functions [§3.1]
(a) ways to view a function $f: X \rightarrow Y$: rule to convert input $x \in X$ to output $y=f(x) \in Y$; set of ordered pairs (x, y); arrow diagram from X to Y
(b) one-to-one, onto, and bijective functions
(c) composition of functions, and inverse functions
(d) modular arithmetic functions like $f(x)=x \bmod n$
9. Sequences and strings [§3.2]
(a) finite and infinite sequences: ordered list of elements of some set
(b) set of strings X^{*} on a finite alphabet X, the null string $\lambda \in X^{*}$, concatenation of strings
(c) subsequences (not necessarily consecutive) versus substrings (consecutive)
10. Relations [§3.4, 3.5]
(a) digraph representation of a relation R on a set X
(b) properties that R can have: reflexive, symmetric, anti-symmetric, transitive
(c) partial order (reflexive, anti-symmetric, transitive): way to "compare" things in X
(d) equivalence relation (reflexive, symmetric, transitive): way to say certain things in X are "the same"; corresponds to a partition of X into equivalence classes
11. Basic counting principles [§6.1]
(a) multiplication principle: total $\#$ of possibilities $=$ product of $\#$ of choices at each step
(b) addition principle: size of union of disjoint sets is sum of sizes of the sets
(c) principle of inclusion and exclusion: $\#(X \cup Y)=\# X+\# Y-\#(X \cap Y)$
12. Permutations and combinations [$86.2,6.3$]
(a) number of permutations (=orderings) of n element set is $n!=n \times(n-1) \times \cdots \times 1$, and number of k-permutations (=orderings of k element subsets) is $P(n, k)=n!/(n-k)$!
(b) for rearrangements of word with repeated letters like MISSISSIPPI use $n!/\left(k_{1}!k_{2}!\cdots k_{m}!\right)$
(c) number of k-combinations ($=k$ element subsets) of n element set is the binomial coefficient, a.k.a. " n choose k " number, $C(n, k)=n!/(k!\cdot(n-k)$!)
(d) for selections of k things from n things with repeats allowed use $C(k+n-1, k)$
13. Binomial coefficients [§6.7]
(a) Binomial Theorem: $(x+y)^{n}=\sum_{k=0}^{n} C(n, k) x^{k} y^{n-k}$
(b) Pascal's Triangle of $C(n, k)$, defined by recurrence $C(n+1, k)=C(n, k)+C(n, k-1)$
14. Pigeonhole principle [§6.8]
(a) if you place n pigeons in k holes, with $k<n$, at least one hole has at least two pigeons
