Homework \#10, Due: 4/3
 Math 181 (Discrete Structures), Spring 2024

Problem 1 is worth 4 points, and Problem 2 is worth 6 points, for a total of 10 points. Remember to show your work and explain your answers on all problems!

1. Let $X=\{1,2,3\}$. Define a relation R on $X \times X=\{(a, b): a, b \in X\}$ where $(a, b) R(c, d)$ if and only if $a+b=c+d$. For example, we have that $(2,2) R(1,3)$ since $2+2=4=1+3$.
(a) Explain why R is an equivalence relation.
(b) List one element of each equivalence class of R.
2. Let $X=\{a, b, c\}$ and let $S \subseteq X^{*}$ be the set of strings over the alphabet X of length four. For example, three of the elements in S are: $a b a b, a c b b$, and $c c b b$.
(a) What is $\# S$ (the number of elements in S)?
(b) Let $S_{1} \subseteq S$ be the subset of strings in S that begin with "a." What is $\# S_{1}$?
(c) Let $S_{2} \subseteq S$ be the subset of strings in S that end with "bb." What is $\# S_{2}$?
(d) Let $S_{3} \subseteq S$ be the subset of strings in S that begin with " a " or end with " $b b$ " (or both). What is $\# S_{3}$? Hint: use the Principle of Inclusion and Exclusion!
