Homework \#11, Due: 4/17
 Math 181 (Discrete Structures), Spring 2024

Problem 1 is worth 4 points, and Problem 2 is worth 6 points, for a total of 10 points. Remember to show your work and explain your answers on all problems!

1. In a standard deck of playing cards, cards have two qualities:

- a rank: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, or Ace;
- a suit: Spades $(\boldsymbol{\uparrow})$, Hearts (\diamond), Diamonds (\diamond), or Clubs $(\boldsymbol{\$})$.

There are 13 ranks and 4 suits, and each combination of rank and suit appears exactly once. So there are a total of $13 \times 4=52$ cards. A poker hand consists of any 5 of these 52 cards. We saw in class that there are $C(52,5)=52!/(5!\cdot 47!)=2,598,960$ different poker hands.
(a) A poker hand is called four of a kind if it consists of all four cards of one rank, plus any other card. For instance: $8 \checkmark 8 \diamond 8 \checkmark 3 \diamond$. How many four of a kind hands are there?
(b) A poker hand is called a full house if it consists of three of the cards of one rank, and two of the cards of another rank. For instance: $5 \mathrm{p} 5 \mathrm{5} \mathbf{~ J} \triangleleft \mathrm{J} \diamond$. How many full house hands are there?
2. (a) How many rearrangements of the word LOLLYPOP are there?
(b) How many rearrangements of LOLLYPOP start with a Y or end with a P (or both)? Hint: remember the Principle of Inclusion and Exclusion!
(c) How many rearrangements of LOLLYPOP have the two O's adjacent? Hint: treat the two O's as a single character "OO" to force them to be adjacent.

