Homework \#12, Due: 4/24
 Math 181 (Discrete Structures), Spring 2024

Problem 1 is worth 6 points, Problem 2 is worth 2 points, and Problem 3 is worth 2 points, for a total of 10 points. Remember to show your work and explain your answers on all problems!

1. Recall that in class we proved the Binomial Theorem: $(x+y)^{n}=\sum_{k=0}^{n} C(n, k) x^{k} y^{n-k}$. Use the binomial theorem to prove the following identities for the binomial coefficients $C(n, k)$:
(a) $\sum_{k=0}^{n} 2^{k} \cdot C(n, k)=3^{n}$
(b) $\sum_{k=0}^{n}(-1)^{n-k} \cdot 2^{k} \cdot C(n, k)=1$
(c) $\sum_{k=0}^{n} k \cdot C(n, k)=n \cdot 2^{n-1}$

Hint: take the derivative, with respect to x, of the binomial theorem identity.
2. We saw how the $C(n, k)$ form Pascal's Triangle. Here are the first 16 rows of Pascal's Triangle:

Fill in all of the odd values in the above triangle, and leave the even values unfilled. Describe the resulting pattern that you see.
3. Show that any subset of $X=\{1,2,3,4,5,6\}$ of size at least 4 contains a pair of elements whose sum is 7. Hint: use the Pigeonhole Principle, where the "holes" are the pairs of numbers in X summing to 7 .

