Homework #5, Due: 2/14 Math 181 (Discrete Structures), Spring 2024

Problem 1 is worth 5 points, and Problem 2 is worth 5 points, for a total of 10 points. Remember to *show your work* and *explain your answers* on all problems!

1. Recall the set of integers is $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$. An integer x is called a *multiple* of an integer y if there is some integer z such that $x = z \times y$. For example, 15 is a multiple of 3 since $15 = 5 \times 3$.

Let P(x, y) be the propositional formula "x is a multiple of y," where the domain of discourse is the set $\mathbb{Z} \times \mathbb{Z}$ of pairs of integers. Write the meaning in English of the following propositions, and determine (with explanation) if they are true or false.

(a) $\exists x \forall y P(x,y)$

(b) $\exists y \ \forall x \ P(x,y)$.

2. Give a direct proof of the following theorem about sets: "For all sets X, Y, and Z, if $X \subseteq Y$ then $X \cup Z \subseteq Y \cup Z$."