Homework \#7, Due: 3/13
 Math 181 (Discrete Structures), Spring 2024

Problem 1 is worth 5 points, and Problem 2 is worth 5 points, for a total of 10 points. Remember to show your work and explain your answers on all problems!

1. (a) Prove by induction that

$$
\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}
$$

for all positive integers $n \geq 1$. (This kind of a sum is called a geometric sum; see Example 2.4.4 in the book.) Conclude that $\frac{1}{2^{1}}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n}}<1$ for all $n \geq 1$.
(b) Prove by induction that

$$
\frac{1}{2^{1}}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{n}{2^{n}}<2
$$

for all positive integers $n \geq 1$. Hint: notice the identity

$$
\frac{1}{2^{1}}+\frac{2}{2^{2}}+\cdots+\frac{n+1}{2^{n+1}}=\left(\frac{1}{2^{1}}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n+1}}\right)+\frac{1}{2}\left(\frac{1}{2^{1}}+\frac{2}{2^{2}}+\cdots+\frac{n}{2^{n}}\right)
$$

and use the result in part (a).
2. By experimenting with small values, guess a formula for

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n(n+1)}
$$

and then use induction to prove that your formula is correct for all positive integers $n \geq 1$.

