Midterm #2, 4/10Math 181 (Discrete Structures), Spring 2024

Each problem is worth 10 points, for a total of 50 points. You have 50 minutes to do the exam. Remember to *show your work* and *explain your answers* on all problems!

1. Prove the following theorem:

"If the product of two integers is even, then at least one of these two integers must be even." Use proof by contrapositive or proof by contradiction.

- 2. Prove by induction that $1 + 3 + 5 + \dots + (2n 1) = n^2$ for all integers $n \ge 1$. (The left-hand side of the identity is the sum of all odd positive integers less than or equal to 2n 1.)
- 3. Let $X = \{0, 1, 2, 3\}$ and define a function $f: X \to X$ by $f(x) = (3x+2) \mod 4$ for all $x \in X$. Draw the arrow diagram of f. Is f one-to-one? Is f onto?
- 4. Let $X = \{a, b, c\}$, and consider the set $X^* \setminus \{\lambda\}$ of non-null strings over the alphabet X. Let R be the relation on this set of strings where for $\alpha, \beta \in X^* \setminus \{\lambda\}$ we have $\alpha \ R \ \beta$ if and only if α and β have the same first letter. For example, *abc* R *acabb* and *bb* R *bca* and *c* R *caa*. Explain why R is an equivalence relation, and describe all the equivalence classes of R.
- 5. Let $A = \{1, 2\}$ and $C = \{1, 2, 3, 4, 5, 6\}$. How many sets B with $A \subseteq B \subseteq C$ are there? Explain your answer, for instance by referencing a counting principle.