Math 210 (Modern Algebra I), HW # 6,

Fall 2024; Instructor: Sam Hopkins; Due: Wednesday, November 13th

- 1. Let R be a ring (not necessarily commutative, but with 1) and let M be left R-module.
 - (a) For $x \in M$, define the annihilator of x to be $Ann(x) := \{r \in R : rx = 0\}$. Prove that Ann(x) is always a left ideal of R.
 - (b) Suppose that M is cyclic, i.e., $M = \langle x \rangle$ for some $x \in M$. Prove that $M \simeq R/\operatorname{Ann}(x)$.
- 2. Let R be a commutative ring.
 - (a) Prove that the polynomial ring R[x] is naturally an *R*-module.
 - (b) Prove that the following is a short exact sequence of R-modules:

$$0 \to R[x] \xrightarrow{\cdot x} R[x] \to R \to 0$$

Here $R[x] \xrightarrow{\cdot x} R[x]$ is the map $f(x) \mapsto x \cdot f(x)$, and $R[x] \to R$ is the map $f(x) \mapsto f(0)$.

- 3. Let p be a prime number and A an abelian group. Show that $A[p] := \{a \in A : pa = 0\}$ is naturally a vector space over $\mathbb{Z}/p\mathbb{Z}$. Deduce that if A is finite, then $|A[p]| = p^n$ for some n.
- 4. Let $m \ge 1$ be a positive integer.
 - (a) Prove that for any abelian group A, $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, A) \simeq A[m] := \{a \in A \colon ma = 0\}.$
 - (b) Use part (a) to show that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z}) \simeq \mathbb{Z}/\operatorname{gcd}(m,n)\mathbb{Z}$ for any $n \geq 1$.
 - (c) Use part (a) to show that the dual $(\mathbb{Z}/m\mathbb{Z})^*$ of $\mathbb{Z}/m\mathbb{Z}$, as a \mathbb{Z} -module, is 0.
- 5. (a) Explain why the sequence $0 \to \mathbb{Z} \to \mathbb{Q}$ of abelian groups is exact.
 - (b) Prove that, after tensoring over \mathbb{Z} with $\mathbb{Z}/2\mathbb{Z}$, the induced sequence of abelian groups

$$0 \to \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \to \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$$

is not exact.

(This means that "the tensor product functor is not left-exact.")