Math 210 (Modern Algebra I), Midterm # 1,

Fall 2024; Instructor: Sam Hopkins; Taken on: Wednesday, October 2nd

Each problem is worth 10 points, for a total of 50 points. You have 80 minutes to do the exam. Partial credit will be given generously, so write as much as you know for each problem.

- 1. Give an example of two finite groups G and H of the same order which are not isomorphic. Explain why your example is correct.
- 2. Let $n \ge 1$ be a positive integer and recall the dihedral group $D_n = \langle r, s \colon r^n = s^2 = (rs)^2 = 1 \rangle$ is the group of symmetries of a regular *n*-gon, where *r* is clockwise rotation by $\frac{2\pi}{n}$ radians and *s* is a reflection. Now suppose that n = 2m is even and let $N = \langle r^m \rangle \le D_n$.
 - (a) Prove that N is a normal subgroup of D_n .
 - (b) What is the order of the quotient group D_n/N ?
- 3. (For this problem, recall the notations $n\mathbb{Z} = \{nx : x \in \mathbb{Z}\}, G \cap H = \{x : x \in G \text{ and } x \in H\}$ and $G + H = \{g + h : g \in G, h \in H\}$.) Consider the subgroups $G = 15\mathbb{Z}$ and $H = 20\mathbb{Z}$ of \mathbb{Z} , the integers under addition. Define the numbers m_1, m_2, m_3, m_4 by

 $G/(G\cap H) \simeq \mathbb{Z}/m_1\mathbb{Z}; \quad H/(G\cap H) \simeq \mathbb{Z}/m_2\mathbb{Z}; \quad (G+H)/G \simeq \mathbb{Z}/m_3\mathbb{Z}; \quad (G+H)/H \simeq \mathbb{Z}/m_4\mathbb{Z}.$

What are m_1, m_2, m_3 , and m_4 ? **Hint**: the 2nd isomorphism theorem can save you time here.

- 4. Fix positive integers $1 \le k \le n$. Let \mathcal{F} denote the set of k-element subsets of $\{1, 2, \ldots, n\}$ and let $G = S_n$, the symmetric group on n letters, act on \mathcal{F} by setting $\sigma \cdot X = \{\sigma(i) : i \in X\}$ for all $X \in \mathcal{F}$ and $\sigma \in G$. Now fix any one $X \in \mathcal{F}$, e.g., $X = \{1, \ldots, k\}$.
 - (a) Describe the orbit of X under G.
 - (b) Describe the stabilizer $G_X \leq G$.
 - (c) Use the orbit-stabilizer theorem to prove that $|\mathcal{F}| = \frac{n!}{k!(n-k)!}$.
- 5. Let p be a prime number and let $G = S_p$ be the symmetric group on p letters.
 - (a) Explain why the Sylow *p*-subgroups of G are $\langle \sigma \rangle$ for $\sigma \in G$ a *p*-cycle.
 - (b) Explain why this means that n_p , the number of Sylow *p*-subgroups of *G*, is $\frac{1}{p-1}$ times the total number of *p*-cycles in *G*.
 - (c) Explain why the total number of p-cycles in G is (p-1)!.
 - (d) Use the Sylow theorems to conclude that $(p-2)! \equiv 1 \mod p$. (This is Wilson's theorem.)