Math 211 (Modern Algebra II), HW # 1,

Spring 2025; Instructor: Sam Hopkins; Due: Wednesday, January 29th

- 1. Let K be a field and L/K a finite extension. Recall [L:K] denotes the degree of L over K. Prove the following:
 - (a) [L:K] = 1 if and only if L = K.
 - (b) If [L:K] is a prime number, then there are no intermediate fields between K and L.
 - (c) If $u \in L$ is an algebraic element of degree n over K, then n divides [L:K].
- 2. Let K be a field. Recall that K[x] denotes the polynomial ring, and K(x) denotes the field of rational functions, both with coefficients in K. We have seen that a basis of K[x] as a K-vector space is $\{x^j : j \ge 0\}$. Prove that the following is a K-basis of K(x):

$$\{x^j \colon j \ge 0\} \cup \left\{\frac{x^j}{P(x)^k} \colon k \ge 1, \, P(x) \in K[x] \text{ monic and irreducible}, \, 0 \le j < \deg(P(x))\right\}.$$

Hint: remember the partial fraction decomposition of a rational function.

- 3. Let $f(x) = x^3 2x + 2 \in \mathbb{Q}[x]$, a polynomial which is irreducible over the rational numbers. (Look up "Eisenstein's criterion" if you want to see why it is irreducible.) In fact, f(x) has a unique real root, call it $u \in \mathbb{R}$. Let $L = \mathbb{Q}(u)$. We have seen that $\{1, u, u^2\}$ is a \mathbb{Q} -basis of L.
 - (a) Express $u^4 2u^3 + u^2 4 \in L$ as a Q-linear combination of $\{1, u, u^2\}$.
 - (b) Express $(u^2 3u + 1)^{-1} \in L$ as a Q-linear combination of $\{1, u, u^2\}$.

Hint: like we saw in class, use polynomial long division and the Euclidean gcd algorithm.

- 4. Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Find $[L : \mathbb{Q}]$ and find a \mathbb{Q} -basis of L.
- 5. Recall that a real number $c \in \mathbb{R}$ is called *constructible* if we can produce the point $(0, c) \in \mathbb{R}^2$ starting from the integer lattice $\mathbb{Z}^2 \subseteq \mathbb{R}^2$ and using a straightedge and compass. Prove that if $c \geq 0$ is constructible, then \sqrt{c} is constructible.