UMN MATH 8668 FALL 2019 BONUS PROBLEMS

SAM HOPKINS

(1) (a) [2] Let ODD(n) denote the permutations in \mathfrak{S}_n with no cycles of even length. Show (for instance, using generating function manipulations) that

$$\sum_{\sigma \in \text{ODD}(n)} 2^{\#\text{cycles}(\sigma) - 1} = n!$$

for all $n \ge 1$.

- (b) [2+] Prove the equality in part (a) bijectively.
- (2) (a) [2] Recall the q-binomial coefficient

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q} = \sum_{\substack{w \text{ rearrangement of} \\ k \text{ 1's, } n-k \text{ 0's}}} q^{\text{inv}(w)}.$$

Assume that n = 2N is an even number. Show, by using a signreversing involution, that the evaluation of the q-binomial coefficient at q := -1 is equal to the number of rearrangements $w = (w_1, w_2, \ldots, w_n)$ of k 1's and n - k 0's for which $w_i = w_{n+1-i}$ for all $1 \le i \le n$. (In other words, setting

 $W := \{ \text{rearrangements } w \text{ of } k \text{ 1's and } n - k \text{ 0's } \},\$

find an involution $\tau \colon W \to W$ such that

- inv(w) and $inv(\tau(w))$ have opposite parity whenever $w \neq \tau(w)$;
- inv(w) is even if $w = \tau(w)$;
- $\#\{w \in W : w = \tau(w)\} = \#\{w \in W : w_i = w_{n+1-i} \ \forall 1 \le i \le n\}.$
- (b) [2] Adapt your argument from (a) to give a combinatorial interpretation of the evaluation at q := -1 of the *q*-multinomial coefficient

$$\begin{bmatrix} n \\ k_1, k_2, \dots, k_\ell \end{bmatrix}_q = \sum_{\substack{w \text{ rearrangement of} \\ k_1 \text{ 1's, } k_2 \text{ 2's, } \dots, k_\ell \ \ell' \text{s}}} q^{\text{inv}(w)},$$

(still under the assumption that n = 2N is even).

- (3) (a) [2-] Let P be a finite poset. Let \mathcal{A} denote the set of antichains of P (recall that an *antichain* of P is a subset $A \subseteq P$ of pairwise incomparable elements). Define a partial order \preceq on \mathcal{A} by $X \preceq Y$ iff for all $x \in X$ there exists $y \in Y$ such that $x \leq_P y$. Show that (\mathcal{A}, \preceq) is isomorphic to J(P), the distributive lattice of order ideals of P.
 - (b) [2] Let $(A_1, A_2, \ldots, A_k) \in \mathcal{A}^k$ be any k-tuple of antichains. Show that we can always find a k-element multichain $B_1 \preceq B_2 \preceq \cdots \preceq B_k$ in (\mathcal{A}, \preceq) so that $\#\{i = 1, \ldots, k \colon p \in A_i\} = \#\{i = 1, \ldots, k \colon p \in B_i\}$ for all $p \in P$ (i.e., the multiset sum of the A_i equals the multiset sum of the B_i). Show that this multichain $B_1 \preceq \cdots \preceq B_k$ is unique.