
11/24Math4990 : Matchings 2nd half
of Ch

. 11Reminders : . Midterm#2 will be of Bona

graded t returned soon, if not all ready .

> HW#5 (the last one! ) has been posted , is
due in a week on 121 l .

-

Consider the following
" real world problem

"

:

a group of people
are moving into a house together

and they need to decide how to allocate rooms to

the housemates . Each housemate has certain

rooms they would consider acceptable to live in ,
and

other rooms notacceptable .

E: How can we allocate rooms to housemates

so that every housemate gets
an acceptable room?

It's helpful to represent the information of
which housemates find which rooms acceptable
in the form of a bipartite graph :
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X Y
we have a set X of vertices representing the

housemates
,
a set Y representing therooms ,

and an edge from x EX to y
EY means

housemate x finds roomy acceptable .

What is a valid assignment of housemates
to rooms in this graph theory language?
It's a subset ofedges with each vertex
contained in exactly one edge of the subset :

•
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Deth A matching in a graph G is asubset
of edges St . every vertex is inat most one of
those edges . It is a perfect matching if
every vertex is in exactly one of the edges .

We'll focus on matchings in bipartite
graphs . from now ontoday let G be
a bipartite graph w/ bi partition (X , Y ) .

Dein Aperfect matching of X into Y is
a matching that includes every vertex
of X lbut not necessarily of Y ) ; e . g. ,

toy
•
-

*
X Y

Maybe have more rooms than housemates ,

tout that's ok as long as every hunk gets a room.

Maini . When does a perfect matohgh of
X into 4 exist? And how to find it ?



Obituaries : Definitely need 1412 IN ,
i. e.
,

there has to be at least as many rooms

as housemates
.
Similarly

,

each × EX has

to be adjacent to atleast one y EY , i. e
;
every

housemate has to find some roomacceptable .

Continuing this reasoning leads to .
.
.

Dein For a subset S of vertices , its

neighborhood , Nds) or NCS) ,

is the set

of all vertices adjacent to some s E S .

Prod If a perfect matching X into Y exists ,

then I N (s) l Z l Sl f S EX .

RI If there's some S EX w/ I s I > INCal
,
then:

X Y No hope to match

s

Nest all the things in s !
Dm



The surprising for# is that the converse
of this proposition is also true:

thin (
"

Hall 's MarriageTheorem
")

F a perfect matching of X into Y
⇐ f SE X

,
I Ncss I I 1st .

.

Actually , we can say abit more . Let 's

call a matching withthemost edges
among any matching a maximum matching .

Thin If M is a maximum matching then

#unmatched vertices
xEX in M

= YEE 1st
- INCH

.

Pt of easy direction-
:

HSEX
,

# unmatched
vertices *

Xin m
d l Sl - l NCS) /

X y
Can match at most

since 1Ncs) ( of
these s

s#Nso 1st - INCsn go
unmatched - pg



What about the hard direction? Lets not

just prove it , but also give an algorithm
which finds a maximum matching .

Idea behind algorithm: start w/ any
matching , and if it's not maximum ,
augment it until it is .

What do we mean by 'augment
' ?

Consider M
'

.

•a-
I

\
×

a-a

X Y

we can find path from x
EX to y E Y sit .

x , y both und in M , and path
alternates Fo-oe-•-ooo

-9 between

non- edges t edges of M . Call this an augmenting

path .
Can flip edges along augment. path:
-•

f-
•

←
bigger•

\ → matching !
To. augment •-•



So the way our algorithm will work is :

• we repeatedly augment along augmenting
paths as long as we canj

•

we stop when we have
no augmenting

paths .

Thin Let M be a matching . Then :

a) if M has an augmenting path . then we can

augment along it to get a matchingM
' " menages .

b) It M has no augmenting paths, then F SE X

s it . He Unmatched
vertices x EX = IS I - I N CS) / ,
in M

which means M is a maximum matching.

PI al : we have already explained .

b) . . Suppose M has no augmenting paths. Let's
call a path P an almost augmenting path
if it : . starts at any unmd x EX,

" between non- edge
'

. alternates at-co-•-. and edges in M
-

Consider set V : = all vertices reachable



by a an almost augmenting path .

X Y
Eg . I

me.•
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Let s : = un X . Claim . µ Csl = U
n Y

,

TTT
'

and consists of y EY sit . y matched
to some x ES

.

V looks like :
'

'
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otherwise:
-

Could extend almost augmentingpath
to a full augmenting path , but

we assumed

we didn't have any of these .
So indeed

for this S we have

# unmatched x EX in Me ISI
- IN (Stl ,

and since #
unmatched z max ( 1st - I NLS l l

l
,

this means our matching is maximum



Example of augmentation algorithm :

\
⇐ ⇒ ÷ .

¥ I *
start w/ empty
matching

÷.

no.

Reina: this algorithm is a special
case of the Ford-Fulkerson algorithm

for finding a maximum flow
in a network with edge capacities .



Now let's takea break .
. .

And when we come

back let 's work on matching

problems on the worksheet

in breakout groups !


