Math 4990: Permutations, Cycles
$$\frac{10/6}{Ch.G}$$

Reminders: \cdot HW # 2 is due today
 \cdot Midterm 1 is posted, due in a week (11/13)
Today we'll discuss permutations in more detail.
We have so far considered a permutation
of [n] to be a word (or list) $p_1 p_2 \cdots p_n$
where pie [n] and each iten] is used once.
 $C.9$: $32(6541)$ is a perm. of [G]
(one-line notation)
But there's another way to think of
permutations: as functions $p: [n] \rightarrow [n]$
where $p(i) = Pi$.
 $a.g.$ i 2 3 4 5 6
 $c.g.$ i 2 5 4 1 i 4 i 4 i 4 i
 $c.g.$ i 2 3 4 5 6
 $c.g.$ i 2 5 4 i 4 i 4 i 4 i
 $c.g.$ i 2 5 4 i 4 i 4 i 4 i
 $c.g.$ i 2 5 i 4 i 4 i 4 i

In fact, permutations = bijections

$$[n] \rightarrow [n]$$

Viewing permutations p and q as functions,
we can compose them to get another
permutation p.q: (p-q)(i) = p(q(i)).
e.g. p= $\binom{123}{321}$, q= $\binom{123}{312}$, p.q. $\binom{12}{3}$, $\frac{2}{3}$ = $\binom{123}{132}$.
In this way, permutations on [n] form
What is called a group in algebra.
Actually, the name of the group of permis
is the symmetric group, denoted Sn.
Lot pESn. We can compose p with itself
to make p.p =: p², and similarly
P.P.P... P =: p^m for $m \ge 1$.
meterms

What do these iterates p^m look like? Prop. For any iEIN], there exists $m \ge 1$ so that $p^{m}(i) = i$. Pf: Pigeon-hole principle! Since [n] is finite, there must be j>k=1 so that p'(i) = pk(i). Then apply inverse Of pK = p^{-k} to both sides; p^{j-k} (i)=i. V So if we keep applying P, from any initial Point we'll eventually get back where we started. Essiest to understand via a Picture: $P^{2}(123456) \iff (5)^{\circ}(123456) \iff (5)^{\circ}(123456) \iff (5)^{\circ}(123456) \iff (5)^{\circ}(1236541) \iff (5)^{\circ}(1000) \iff (5)^{\circ}(100) \implies (5)^{\circ}(10) \implies (5)^{\circ}(10) \implies (5)^{\circ}(10) \implies (5)^{\circ}(10) \implies (5)^{\circ}($

We see that any permutation decomposes into a which of cycles. This leads to another Notation for permutations called cycle notation: $P = \begin{pmatrix} 123456 \\ 326541 \end{pmatrix} \iff P = (136)(2)(45)$ $mink = \frac{1376}{100}$ Note that there are multiple ways to write a permutation in cycle notation: (136)(2)(45) = (54)(613)(2) = ...If we want to fix one particular choice, We can use canonical cycle notation: · greatest element of every cycle is 1st cycles written in increasing order of Herr greatest clements L-to-R. P= (2) (54) (613) + cononical since 2<5<6 eig.

Defn Let $\lambda_{z}(\lambda_{1},...,\lambda_{k})$ be a partition of n. We say that permittation pESn has cycle Fype (or just type) & if it has (exactly) K cycles of Sizes X1, X2,..., Xk. p=(2)(54)(613)(87) has type (3,2,7,1)We can count permutations by type The number of pESn of type & $= \begin{bmatrix} n! \\ a_1! & a_2! & 2^{a_2} & \dots & a_n! & n^{a_n} \end{bmatrix}, \text{ where}$ $a_i = \# \circ f i's \quad in \quad \lambda \quad for \quad i = 1, \dots, n.$ $e.g. \lambda = (3,2,2,1), \alpha_1 = 1, 9_2 = 2, \alpha_3 = 1, \alpha_{12} = 0, \alpha_{13} = 1, \alpha_{12} = 0, \alpha_{13} = 1, \alpha_{13} \alpha_{13$ So $\# perms = \frac{8!}{1! 1' 2! 2^2 1! 3'} = \frac{8!}{2! 4.3!} = 4.7.6.5$ of $\pm y pe \lambda^2 = \frac{8!}{1! 1' 2! 2^2 1! 3'} = \frac{8!}{2! 4.3!} = 840$

Pf of this. We'll do a "proof by example". Sug
$a_1 = 3, a_2 = 0, a_3 = 2, a_4 = 1, a_5 = a_6 = \dots = 0$
To make a perm. of this cycle type, start
with any permutation in one-line notation:
91712410865132311
Then draw parentheses around a, groups = f1#,
azgroups of 2, az groups of 3#5, etc.:
(9)[1](7)[12410)(865)(132311)
We'll make all permis of type & this way, but
We'll over count.' 3ways to cycle $3ways to cycle(9)[1](7)[12 4 10)[8 6 5](13 2 3 11)31$ t p
Wight to permit
lividing n'i by a, 19 az! 292 az! 393
exactly accounts for the overcounting 12

Then $f_{N}(x) = f_{N-1}(x) \cdot (x + (n-1))$ $\Rightarrow \sum_{n,k} x^{k} = (\sum_{n=1,k} x^{k}) \cdot (x + (n-1))$ $= \sum_{n=1,k} x^{k+1} + (n-1) \cdot \sum_{n=1,k} x^{k}$ $= \sum_{n=1,k-1} x^{k} + \sum_{n=1,k} (n-1) \cdot a_{n-1,k} x^{k}$ $= \sum_{n=1,k-1} (a_{n-1,k-1} + (n-1)) \cdot a_{n-1,k} x^{k}$

Extract coefficient of
$$\chi^{k}$$
 in this equality:
 $a_{n,k} = a_{n-1,k-1+} (n-1) a_{n-1,k}$
 $\Rightarrow a_{n,k}$ satisfy the same recurrence as conicl.
Easy to check base cases agree too. \sqrt{k}
On Worksheet you'll give a combinatorial pt of thm.
Recall $\binom{k}{2}$ $\sum_{k=1}^{n} S(n,k) (x_{k} = \chi^{n}, where
 $\binom{k}{2} x(\chi-1) (\chi-2) \cdots (\chi-(k-1))$
 $\lim_{k=1}^{n} C(n,k) \chi^{k} = \chi(\chi_{1}) \cdots (\chi+(n-1))$
if we substitute $\chi := -\chi$ then we get
 $(\chi \chi) \sum_{k=1}^{n} j_{(n,k)} \chi^{k} = (\chi)_{n}$, where $j_{(n,k):=(1)}^{n,k} c(n,k)$
 $\lim_{k=1}^{n} j_{(k)} \chi^{k} = (\chi)_{n}$, where $j_{(n,k):=(1)}^{n,k} c(n,k)$
 $\lim_{k=1}^{n} j_{(k)} \chi^{k} = (\chi)_{n}$, where $j_{(n,k):=(1)}^{n,k} c(n,k)$
 $\lim_{k=1}^{n} j_{(k)} \chi^{k} = (\chi)_{n}$, where $j_{(n,k):=(1)}^{n,k} c(n,k)$
 $\lim_{k=1}^{n} j_{(k)} \chi^{k} = (\chi)_{n} \chi^{k}$ and $j_{(n,k):=(1)}^{n,k} \chi^{k}$
 $\lim_{k=1}^{n} j_{(k)} \chi^{k} = (\chi)_{n} \chi^{k}$ and $j_{(n,k):=(1)}^{n,k} \chi^{k}$
 $\lim_{k=1}^{n} j_{(k)} \chi^{k} = (\chi)_{n} \chi^{k}$ and $j_{(n,k)} \chi^{k}$$

Another very powersul to all for understanding
the cycle structure of permutations is the
So-called "sundamental bijection" [t's
a bijection
$$S_n \rightarrow S_n$$
 that goes as follows:
 $P \leftrightarrow \hat{p}$
write $p \in S_n$ in canonical cycle notation
"evase the perentheses t interpet in 1-line notation.
Eq. $p = (2)(54)((613) \rightarrow) \hat{p} = 254613$
Canonical! $(=(125)(346))$
Why is $p \rightarrow \hat{p}$ a bijection?
Given $\hat{p} \mid ook for \mid eft - to - right maxima:$
 $f's > all f's to their left.
 $e^{-2} \cdot \hat{p} = 254613 t^{-2} maximal$
Mese tell you where to place ('s.
 $p = (2)(54)(613) \rightarrow f^{-2} \cdot f^{-2}$$

$$P \rightarrow \widehat{p} \text{ lets us understand typical cycle structure.}$$

$$Prop: For any ide[n], Prob. that i is in a
K-cycle (isseen) in a vandom $p \in Sn$ is $\frac{1}{n}$.
$$Pf: S: na all ie[n] 'look-the sume' up to relubeling,
can prove this for i=n. Then n is in a
K-cycle in p ifs h is the kth to last letter in \widehat{p} :
$$P=(2)(SY1(G13) \rightarrow \widehat{p}=2.SYC13)^{3+4} \text{ last}$$

$$Pi = (2)(SY1(G13) \rightarrow \widehat{p}=2.SYC13)^{3+4} \text{ last}$$

$$Pi = (2)$$$$$$

//

Nowlet's take a break...

And when we come back, let's work in breakout groups on the work sheet, where you'l) use the fund, bij. p-) p to give a combinatorral proof