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The June 2021 issue of Crux Mathematicorum included, on page 287, an intriguing prob-
lem entitled simply “The Last Problem.” Here we aim to demystify this problem, and, if
not exactly explain its solution, at least situate it in its proper mathematical context.

A partition of a positive integer n is a sequence λ = (λ1, λ2, . . . , λk) of integers satisfying
λ1 ≥ λ2 ≥ · · · ≥ λk > 0 and λ1 + λ2 + · · · + λk = n. For example, λ = (4, 2, 2, 1) is a
partition of 9. Associated to any partition is its Young diagram: the left- and top-justified
array of boxes which has λi boxes in the ith row. The Young diagram of (4, 2, 2, 1) is

A standard Young tableau (SYT) of shape λ is a filling of the Young diagram of λ with
the numbers 1, 2, . . . , n so that these numbers are strictly increasing along rows and down
columns. An SYT of shape (4, 2, 2, 1) is

1 3 5 8

2 4

6 9

7

Young diagrams and tableaux are named after Alfred Young (1873–1940), a British math-
ematician who pioneered the study of the group of permutations of a finite set. Much is
known about SYTs because of their connection to algebra. For instance, there is a beautiful
formula for the number of SYTs of given shape. The hook of a box u in a Young diagram
consists of all boxes directly below, or directly to the right of, that box, including the box
itself. The hook length of a box is the number of boxes in its hook. For example, the box
with entry 2 in the above SYT has a hook length of 4. The celebrated hook length formula
says that the number of SYTs of shape λ, a partition of n, is

n!∏
u

h(u)
,

where the product runs over all boxes u of the Young diagram of λ, and h(u) is the hook
length of the box u. So for example there are 9!/(7 · 5 · 4 · 3 · 2 · 2 · 1 · 1 · 1) = 216 SYTs
of shape (4, 2, 2, 1). To learn more about tableaux in general, see Yong’s short note [3] or
Sagan’s survey [1].
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Our present interest in SYTs lies not in their enumeration but rather in a certain oper-
ation on them, which we now explain using a somewhat fanciful analogy.

We can view a Young diagram as a building whose rooms are the boxes of the diagram.
(This presents some engineering challenges because the rows get longer towards the top, but
never mind that.) If this building belongs to a hierarchical organization, like a company,
then we can view a filling of the Young diagram with numbers 1, 2 . . ., as an assignment of
rooms to the person of rank 1, the person of rank 2, and so on. Suppose that to the left of
our Young diagram office building is a beautiful ocean. Naturally, everyone in the building
wants to have the best view of this ocean, and hence would always prefer to have a room
as much to the left (to be closer to the ocean) and above (to have a higher viewpoint) as
possible. So, in order to respect the pecking order, we might require room assignments to
be such that every person has a lesser rank than the people in the rooms to their left and
above them. Room assignments like this are precisely SYTs.

But now suppose that the CEO (the person of rank 1) leaves the company for a better
opportunity elsewhere. Their departure creates an opening in a very desirable room. Those
of lesser rank will fill this opening. Since the company does not want people moving their
stuff a long way across the building, only the people whose rooms are adjacent, either to
the right or below, can compete to fill that open room. Of course, among these two, the
room is awarded to the person of greater rank. They move from their current room to the
more desirable one, and in doing so they create a new room opening, which is filled in the
same manner: with the people currently adjacent to the right and below competing. In
this way the departure of the CEO causes a series of room re-assignments, which eventually
terminates with an undesirable room at the bottom-right of the building being emptied.
Then, two final things happen to complete the corporate restructuring. First, everyone in
the building gets a “promotion,” meaning that the person of rank 2 becomes rank 1, the
person of rank 3 becomes rank 2, and so on. And second, a new intern, of the least rank n,
gets hired to fill the empty room.

Here is an example of this procedure:

1 3 5 8

2 4

6 9

7

1 leaves−−−−→

• 3 5 8

2 4

6 9

7

2 upgrades−−−−−−→

2 3 5 8

• 4

6 9

7

4 upgrades−−−−−−→

2 3 5 8

4 •
6 9

7

· · ·

· · · 9 upgrades−−−−−−→

2 3 5 8

4 9

6 •
7

promotions−−−−−−−→

1 2 4 7

3 8

5 •
6

n is hired−−−−−−→

1 2 4 7

3 8

5 9

6

This entire operation, which takes one SYT of shape λ to another one, is in fact called
promotion. The promotion operation on tableaux was introduced, together with another
closely related operation called evacuation, by M.P. Schützenberger.1 The sliding process
which goes into the definition of both promotion and evacuation was termed jeu de taquin

1The French mathematician Marcel-Paul Schützenberger (1920–1996) had a wide range of scientific inter-
ests: e.g., he obtained a doctorate in medicine in 1948; and in the 1960s he worked with the famous linguist
Noam Chomsky on the analysis of formal languages. In algebraic combinatorics he is especially remembered
for seminal contributions to the theory of tableaux, symmetric functions, and Schubert calculus.
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by Schützenberger. “Jeu de taquin” literally translates to “teasing game,” but is the name
in French for what is usually called the “15 Puzzle” in English. For an excellent introduction
to promotion and evacuation, see Stanley’s survey [2].

Promotion is an invertible operation. To see this, we can imagine doing all of the steps
backwards: firing the intern, demoting everyone, and forcing them into worse rooms until
there is a spot at the top for a new CEO. Hence, for any given tableau T there must be
some number of times we can apply promotion to T that will get us back to T . But for
most shapes, promotion behaves quite chaotically and it takes a long time for us to get
back to where we started. For instance, we would need to apply promotion 60 times to our
running example SYT of shape (4, 4, 2, 1) in order to return to it. (In contrast, evacuation
is always an involution, meaning if we apply it twice we get back to where we started.)

There are a very small number of partition shapes for which promotion behaves in an

orderly fashion: see [2, §4]. These nice shapes include the rectangle2 a × b := (

a times︷ ︸︸ ︷
b, b, . . . , b).

For any SYT of rectangular shape a × b, if we apply promotion ab times we get back to
where we started; this is [2, Theorem 4.1(a)]. Note that we might get back to where we
started even before ab applications of promotion. For example, for the following SYT of
shape 2× 3, we can apply promotion 3 times to return to it:

1 2 3

4 5 6

Promotion−−−−−−→
1 2 5

3 4 6

Promotion−−−−−−→
1 3 4

2 5 6

Promotion−−−−−−→
1 2 3

4 5 6

By now the reader may recognize that “The Last Problem” from the June 2021 issue of
Crux precisely concerns the promotion operation applied to SYTs of rectangular shape.3

Part (a) of the problem asks the reader to show that ab applications of promotion applied
an SYT T of shape a × b returns the initial tableau T . There is no really simple proof
of this fact: it does follow from the fundamental properties of jeu de taquin as developed
by Schützenberger, but it takes quite a while to develop this theory. We would be very
impressed if any reader submitted a correct solution to this problem. Parts (b) and (c)
also follow from known properties of promotion: see [2, Theorem 2.3], which relates the
“principal chain” and “trajectory” of a tableau, and [2, Theorem 4.1(a)], which explains that
evacuation for rectangular SYTs is 180◦ rotation plus swapping each number i for n+ 1− i.

Although we were not able to explain the full solution to “‘The Last Problem” in this
short space, we hope that we have inspired the reader to learn more about tableaux and
their fascinating properties, as well as the dynamical operations defined on them.
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2Shapes that behave well under promotion also include the staircase δn = (n, n − 1, . . . , 1), though
understanding promotion for the staircase is even more involved than for the rectangle.

3But note that the arrays there are 180◦ rotations of SYTs as we defined them here.

https://users.math.msu.edu/users/bsagan/papers/old/uyt.pdf
https://doi.org/10.37236/75
https://www.ams.org/notices/200702/whatis-yong.pdf
samuelfhopkins@gmail.com

	References

