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Catalan numbers, etc.

Section 1

Catalan numbers, Dyck paths, Naryana numbers, and
the Lalanne–Kreweras involution

Montserrat Mountain, Catalonia, Spain
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Catalan numbers, etc.

Catalan numbers

The Catalan numbers Cn are a famous sequence of numbers

1, 2, 5, 14, 42, 132, 429, 1430, ...,

which count numerous combinatorial collections including:

triangulations
of an n + 2-gon

binary trees
with n nodes

plane trees with
n + 1 nodes

bracketings of
n + 1 terms

a(b(cd)) a((bc)d)

(ab)(cd) (a(bc))d

((ab)c)d

There is a well-known product formula for the Catalan numbers:

Cn =
1

n + 1

(
2n

n

)
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Catalan numbers, etc.

Dyck paths

The interpretation of Cn I want to focus on is in terms of Dyck paths.

A Dyck path of length 2n is a lattice path in Z2 from (0, 0) to (2n, 0)
consisting of n up steps U = (1, 1) and n down steps D = (1,−1) that
never goes below the x-axis:

U U D U U D D D U U D U U U D U D D D D

n = 10

The number of Dyck paths of length 2n is Cn:
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Catalan numbers, etc.

Peaks and valleys in Dyck paths

Dyck paths look like mountain ranges. So we use some topographic
terminology when working with Dyck paths.

A peak in a Dyck path is an up step that is immediately followed by a
down step; a valley is a down step immediately followed by an up step.

Here the peaks are marked by red circles and the valleys by green circles.

It’s easy to see that a Dyck path which has k valleys has k + 1 peaks.
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Catalan numbers, etc.

Narayana numbers

The Narayana number N(n, k) is the number of Dyck paths of length 2n
with exactly k valleys.

n \ k 0 1 2 3

1 1

2 1 1

3 1 3 1

4 1 6 6 1

← array of N(n, k)

Evidently, the Narayana numbers N(n, k) refine the Catalan number Cn:

Cn =
n−1∑
k=0

N(n, k).

They are named after T.V. Narayana, who in 1959 showed that

N(n, k) =
1

n

(
n

k

)(
n

k + 1

)
.
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Catalan numbers, etc.

Symmetry of Narayana numbers

From Narayana’s formula, it follows immediately that

N(n, k) = N(n, n − 1− k)

for all k . That is, the sequence of Narayana numbers is symmetric.

N(3, 0) = 1 N(3, 1) = 3 N(3, 2) = 1

However, it is not combinatorially obvious why the number of Dyck paths
with k valleys should be the same as the number with n − 1− k valleys.
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Catalan numbers, etc.

The Lalanne–Kreweras involution

The Lalanne–Kreweras involution is a map on Dyck paths which
combinatorially demonstrates the symmetry of the Narayana numbers:

#valleys(Γ) + #valleys(LK(Γ)) = n − 1.

4 valleys

5 valleys

Γ

LK(Γ)

As depicted above, to compute the LK involution of a Dyck path Γ, we
draw dashed lines emanating from the middle of every double up step and
every double down step of Γ, at −45◦ and 45◦ respectively; these dashed
lines intersect at the valleys of (an upside copy of) the Dyck path LK(Γ).
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Poset description of LK

Section 2

Poset description of LK
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Poset description of LK

The poset ∆n−1

We can reinterpret the LK involution using a partially ordered set ∆n−1.

∆n−1 is the poset whose elements are intervals [i , j ] := {i , i + 1, . . . , j}
with 1 ≤ i ≤ j ≤ n − 1, and with the partial order given by inclusion:

[i , j ] ≤ [i ′, j ′]⇐⇒ [i , j ] ⊆ [i ′, j ′]⇐⇒ i ′ ≤ i ≤ j ≤ j ′

∆n−1 has a “triangular” Hasse diagram:

[1, 1]

∆1

[1, 2]

[1, 1] [2, 2]

∆2

[1, 3]

[1, 2] [2, 3]

[1, 1] [2, 2] [3, 3]

∆3

[1, 4]

[1, 3] [2, 4]

[1, 2] [2, 3] [3, 4]

[1, 1] [2, 2] [3, 3] [4, 4]

∆4
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Poset description of LK

Dyck paths are antichains in ∆n−1

Recall that an antichain A ⊆ P of a poset P is a subset of pairwise
incomparable elements. We use A(P) to denote the set of antichains of P.

The Dyck paths of length 2n are in bijection with the antichains of ∆n−1:

Dyck path Γ of
length 10

A = {[2, 3], [3, 4]}
∈ A(∆4)

[1, 4]

[1, 3] [2, 4]

[1, 2] [2, 3] [3, 4]

[1, 1] [2, 2] [3, 3] [4, 4]

The number of valleys of Dyck path Γ is the cardinality of antichain A.

Thus, via this bijection, we can view the LK involution as an involution on
antichains LK : A(∆n−1)→ A(∆n−1) which satisfies

#A + #LK(A) = n − 1.
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Poset description of LK

The LK involution on antichains

Panyushev gave a simple description of the LK involution on A(∆n−1):

Theorem (Panyushev, 2004)

Let A = {[i1, j1], [i2, j2], . . . , [ik , jk ]} ∈ A(∆n−1) with i1 < i2 < · · · < ik .
Then LK(A) = {[i ′1, j ′1], [i ′2, j

′
2], . . . , [i ′n−1−k , j

′
n−1−k ]} ∈ A(∆n−1), where

{i ′1 < i ′2 < · · · < i ′n−1−k} = {1, 2, . . . , n − 1} \ {j1, j2, . . . , jk};
{j ′1 < j ′2 < · · · < j ′n−1−k} = {1, 2, . . . , n − 1} \ {i1, i2, . . . , ik}.

From Panyushev’s description, it is immediate that this operation is an
involution (i.e., LK2(A) = A), and that #A + #LK(A) = n − 1.
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Poset description of LK

The LK involution on antichains: example

[1, 9]

[1, 8] [2, 9]

[1, 7] [2, 8] [3, 9]

[1, 6] [2, 7] [3, 8] [4, 9]

[1, 5] [2, 6] [3, 7] [4, 8] [5, 9]

[1, 4] [2, 5] [3, 6] [4, 7] [5, 8] [6, 9]

[1, 3] [2, 4] [3, 5] [4, 6] [5, 7] [6, 8] [7, 9]

[1, 2] [2, 3] [3, 4] [4, 5] [5, 6] [6, 7] [7, 8] [8, 9]

[1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8] [9, 9]

A = {[1, 2], [4, 4], [5, 6], [6, 9]}

[1, 9]

[1, 8] [2, 9]

[1, 7] [2, 8] [3, 9]

[1, 6] [2, 7] [3, 8] [4, 9]

[1, 5] [2, 6] [3, 7] [4, 8] [5, 9]

[1, 4] [2, 5] [3, 6] [4, 7] [5, 8] [6, 9]

[1, 3] [2, 4] [3, 5] [4, 6] [5, 7] [6, 8] [7, 9]

[1, 2] [2, 3] [3, 4] [4, 5] [5, 6] [6, 7] [7, 8] [8, 9]

[1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8] [9, 9]

LK(A) = {[1, 2], [3, 3], [5, 7], [7, 8], [8, 9]}

{1, 3, 5, 7, 8} = {1, . . . , 9} \ {2, 4, 6, 9}
{2, 3, 7, 8, 9} = {1, . . . , 9} \ {1, 4, 5, 6}
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Toggling

Section 3

Toggling
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Toggling

Toggling for antichains

Our first new result gives another expression for the LK involution in terms
of certain “local” involutions called toggles.

Let P be a poset and A ∈ A(P) an antichain. Let p ∈ P be any element.
The toggle of p in A is the antichain τp(A) ∈ A(P), where

τp(A) :=


A \ {p} if p ∈ A;

A ∪ {p} if p /∈ A and A ∪ {p} remains an antichain;

A otherwise.

In other words, we “toggle” the status of p in A, if possible:

x y

z

P =

τx
( )

=

τx
( )

=

τx
( )

=
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Toggling

Toggling in ranked posets

A poset P is ranked if we can write P = P1 t P2 t · · · t Pr so that all the
edges of the Hasse diagram of P are from Pi (below) to Pi+1 (above):

P3

P2

P1

Since τp and τq commute if p and q are incomparable, and all the
elements within a rank are incomparable, we can define

τ i :=
∏
p∈Pi

τp

to be the composition of all toggles at rank i , for i = 1, . . . , r :

τ 2

( )
=
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Toggling

Rowmotion

Rowmotion Row := τ r · · · τ 2τ 1 : A(P)→ A(P) is the composition of all
rank toggles from bottom to top:

A

τ 1−→ τ 2−→ τ 3−→

Row(A)

Rowmotion has been studied by many authors (Cameron–Fon-Der-Flaass,
Striker–Williams, Propp–Roby, etc...) in emerging subfield of dynamical
algebraic combinatorics. Rowmotion is invertible, but not an involution:

A′

τ 1−→ τ 2−→ τ 3−→

Row(A′)

(Actually, Row : A(∆n−1)→ A(∆n−1) has order 2n.)
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Toggling

The LK involution as a composition of toggles

We showed the Lalanne–Kreweras involution can also be written as a
composition of rank toggles:

Theorem (H.–Joseph, 2022)

The LK involution LK : A(∆n−1)→ A(∆n−1) can be written as the
following composition of toggles:

LK = (τ n−1)(τ n−1τ n−2) · · · (τ n−1 · · · τ 3τ 2)(τ n−1 · · · τ 2τ 1)
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Toggling

The LK involution as a composition of toggles: example

A = {[1, 2], [3, 3]}

[1, 3]

[1, 2] [2, 3]

[1, 1] [2, 2] [3, 3]
LK−−→

[1, 3]

[1, 2] [2, 3]

[1, 1] [2, 2] [3, 3]

LK(A) = {[1, 2]]}

τ 1−→ τ 2−→ τ 3−→ · · ·

· · · τ 2−→ τ 3−→ τ 3−→
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Toggling

Rowvacuation

For any ranked poset P, can define rowvacuation Rvac : A(P)→ A(P)
by same formula: Rvac := (τ r )(τ rτ r−1) · · · (τ r · · · τ 3τ 2)(τ r · · · τ 2τ 1).

General algebraic properties of the toggles imply:

Proposition

〈Row,Rvac〉 gives a dihedral group action on A(P), i.e.,

Rvac · Row = Row−1 · Rvac;
Rvac is an involution.

These names come from Schützenberger’s promotion and evacuation
operators acting on the linear extensions of a poset, which can be defined
similarly and satisfy analogous properties.
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Piecewise linear and birational lifts

Section 4

Piecewise linear and birational lifts
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Piecewise linear and birational lifts

Lifting combinatorial constructions: overview

Why did we want to write the LK involution as a composition of toggles?
In order to extend it to the piecewise linear and birational realms...

A recent trend has been to take some combinatorial construction and
realize it as an expression involving + and − and min and max, and then
“de-tropicalize” that PL expression to get a birational transformation.

For example, in 2013, Einstein and Propp introduced piecewise-linear and
birational lifts of rowmotion. Remarkably, many theorems lift:

Theorem (Grinberg–Roby, 2015)

The piecewise-linear and birational lifts of Row : A(∆n−1)→ A(∆n−1)
still have order 2n.

This is surprising, because for other posets these lifts of rowmotion will
not even have finite order!
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Piecewise linear and birational lifts

The chain polytope of a poset

In 1986, Richard Stanley associated to any poset P two polytopes in RP ,
the order polytope O(P) and the chain polytope C(P).

The chain polytope C(P) has facets

0 ≤ xp ∀ p ∈ P,∑
p∈C

xp ≤ 1 ∀ maximal chains C = {xp1 < xp2 < · · · < xpk} ⊆ P.

Stanley proved that the vertices of C(P) are precisely the indicator
functions of antichains A ∈ A(P):

x

y

P
C(P)

x y

z

P
C(P)
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Piecewise linear and birational lifts

Piecewise linear toggling

To define the PL extension of rowmotion, Einstein and Propp (c.f. Joseph)
introduced a piecewise linear extension of the toggles τp.

For p ∈ P, the PL toggle τPLp : C(P)→ C(P) is defined by

τPLp (π)(q) :=


π(q) if q 6= p;

1−max

{∑
r∈C

π(r) :
C ⊆ P a maximal
chain with p ∈ C

}
if p = q.

Restricted to the vertices of the chain polytope C(P), it is the same as τp.

Geometrically, τPLp reflects π within line segment in C(P) in direction xp:
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Piecewise linear and birational lifts

The PL LK involution

As before, for a ranked poset P we use τPL
i :=

∏
p∈Pi

τPLp to denote the
composition of all toggles at rank i .

We define the PL LK involution LKPL : C(∆n−1)→ C(∆n−1) to be

LKPL := (τPL
n−1)(τPL

n−1τ
PL
n−2) · · · (τPL

n−1 · · · τPL
3 τPL

2 )(τPL
n−1 · · · τPL

2 τPL
1 )

By prior theorem, it’s same as LK when restricted to the vertices of C(P).

Theorem (H.–Joseph, 2022)

(1) LKPL is an involution.

(2) For any π ∈ C(∆n−1),
∑

p∈P π(p) +
∑

p∈P LKPL(π)(p) = n − 1.

Observe that (2) is an extension of the fact that LK combinatorially
exhibits the symmetry of the Narayana numbers.
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Piecewise linear and birational lifts

The PL LK involution: example

.4

.1 .2

0 .3 .1

.5 0 0 .1

LKPL

0

.1 .2

.4 .7 .5

0 .1 .1 .2

.1 = 1 − max(0 + 0 + .1 + .4, 0 + .3 + .1 + .4, 0 + .3 + .2 + .4)

We can check that

(.5+0+0+.1+0+.3+.1+.1+.2+.4)+(0+.1+.1+.2+.4+.7+.5+.1+.2+0) =

1.7 + 2.3 = 4

Sam Hopkins Involutions on Dyck paths June 8th, 2022 26 / 36



Piecewise linear and birational lifts

Tropical geometry

Algebraic geometry studies
polynomial expressions like

x3y + y3z + z3x

that give “curvy” hypersurfaces

Tropical geometry studies
piecewise linear expressions like

max(3x + y , 3y + z , 3z + x)

that give “flat” polytopal complexes

(×,+)→ (+,max) = “tropicalization”
(+,max)→ (×,+) = “de-tropicalization”
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Piecewise linear and birational lifts

Birational toggling

Einstein–Propp (c.f. Joseph–Roby) also introduced a birational extension
of the toggles τp (and, using these, rowmotion) via de-tropicalization.

For p ∈ P, the birational toggle τBp : CP 99K CP is

τBp (π)(q) :=


π(q) if q 6= p;

κ ·
( ∏

C⊆P
max. chain,

p∈C

∑
r∈C

π(r)
)−1

if p = q,

where κ ∈ C is some fixed constant.

The birational toggle τBp tropicalizes to the PL toggle τPLp .
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Piecewise linear and birational lifts

The birational LK involution

As before, if P is ranked we set τB
i :=

∏
p∈Pi

τBp .

We define the birational LK involution LKB : C∆n−1
99K C∆n−1

by

LKB := (τB
n−1)(τB

n−1τ
B
n−2) · · · (τB

n−1 · · · τB
3 τ

B
2 )(τB

n−1 · · · τB
2 τ

B
1 )

It tropicalizes to LKPL.

Theorem (H.–Joseph, 2022)

(1) LKB is an involution.

(2) For any π ∈ C∆n−1
,
∏

p∈P π(p) ·
∏

p∈P LKB(π)(p) = κn−1.

Note that (2) is the birational analog of the fact that LK combinatorially
exhibits the symmetry of the Narayana numbers.
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Piecewise linear and birational lifts

The birational LK involution: example

z

x y

u v w

LKB

xy
x+y

z(x+y)
y

z(x+y)
x

κ
uxz

κ
vz(x+y)

κ
wyz

We can check that this operation really is an involution; e.g.,

z ′(x ′ + y ′)

y ′
=

xy
x+y ·

(
z(x+y)

y + z(x+y)
x

)
z(x+y)

x

=
zx + zy
z(x+y)

x

=
z(x + y)
z(x+y)

x

= x .

And if we multiply together all the above values, we get κ3...
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Piecewise linear and birational lifts

Refined symmetries for birational LK

z

x y

u v w

LKB

xy
x+y

z(x+y)
y

z(x+y)
x

κ
uxz

κ
vz(x+y)

κ
wyz

In fact... if you multiply all the entries shaded by one color (with the apex
of the V -shape included twice) you always get κ2. For red we have:

(x · v · v · y) ·
(
z(x + y)

y
· κ

vz(x + y)
· κ

vz(x + y)
· z(x + y)

x

)
= κ2

We show that there are always n − 1 symmetries of LKB like this.
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Conclusion: so what?

Section 5

Conclusion: so what?
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Conclusion: so what?

What do the lifts do for us?

(1) They are more general
All birational identities tropicalize. But PL identities do not always
de-tropicalize. So a result proved at the birational level is a strictly
stronger result. (Ask Tom and Darij about noncommutative stuff...)

(2) They imply further combinatorial results
For any m ≥ 1, the points in 1

mZ∆n−1 ∩ C(∆n−1) correspond to
m-tuples of nested Dyck paths:

m = 4

n = 3

3 valleys

The PL LK involution implies that the generating function over these
m-tuples for the (total) number of valleys statistic is still symmetric.
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Conclusion: so what?

What do the lifts do for us?

(3) They give new ways of looking at combinatorial constructions
Writing LK as a composition of toggles leads us to consider this same
composition of toggles (i.e., rowvacuation) for other posets.

∆n−1 is the root poset of Type An−1. For any root system Φ, can
define Φ-Narayana numbers N(Φ, k) by counting antichains in the
root poset Φ+, and they are again symmetric: N(Φ, k) = N(Φ, r − k).

Theorem (Defant-H., 2021)

For a root system Φ of classical type A, B, C, or D, rowvacuation is an
involution on A(Φ+) which combinatorially exhibits the symmetry of the
Φ-Narayana numbers.

Unfortunately, this fails for exceptional root systems!
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Conclusion: so what?

What do the lifts do for us?

(4) They suggest connections to algebra
Birational rowmotion has been related to the Zamolodchikov
Periodicity Conjecture, Cluster Algebras, Geometric Crystals and
Geometric RSK, et cetera. So far I don’t know of any fancy algebraic
connections like this for rowvacuation, but there might be some...

(5) They give potentially interesting algebro-geometric things
This is more speculative, but... birational lifts of combinatorial
constructions give interesting birational endomorphisms CN 99K CN

(of finite order). Could be worth looking at the variety of fixed points.
See also: our conjectural polynomial invariants of birational LK!
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Thank you!

these slides are on the conference website
and the paper is at https://doi.org/10.5802/alco.201

R. Stanley, Enumerative Combinatorics, Vol. 2
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