Bigraphical arrangements FPSAC '14, Chicago

Sam Hopkins and David Perkinson

MIT and Reed College

July 2nd, 2014

The Shi arrangement

Jian Yi Shi in his 1986 study of the Kazhdan-Lusztig cells of the affine Weyl group \widetilde{A}_{n-1} defined (what is now called) the *Shi arrangement*:

SHI(
$$n$$
) := { $x_i - x_j = 0, 1: 1 \le i < j \le n$ }.

Shi showed that the number of regions is $r(SHI(n)) = (n+1)^{n-1}$.

2 / 26

Stanley's problem

From Cayley, we know that $(n+1)^{n-1}$ counts the number of spanning trees of the (labeled) complete graph K_{n+1} .

Problem (Stanley)

Find a bijection between regions of SHI(n) and spanning trees of K_{n+1} .

Circa 1994, Pak came up with such a bijection using parking functions (for which many bijections with spanning trees exist). Stanley proved that this bijection works, and the procedure has come to be called the "Pak-Stanley labeling" of the Shi arrangement.

Parking functions

Definition

A parking function of length *n* is a sequence $(a_1, \ldots, a_n) \in \mathbb{N}^n$ of nonnegative integers such that its weakly increasing rearrangement $a_{i_1} \leq a_{i_2} \leq \cdots \leq a_{i_n}$ satisfies $(a_{i_1}, \ldots, a_{i_n}) \leq (0, 1, \ldots, n-1)$.

The name "parking function" comes from a certain amusing description due to Knuth, that unfortunately I'm going to skip, in terms of cars trying to park on a one-way street.

Example

The parking functions of length 3 are

(0,0,0), (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), (0,0,2)(0,2,0), (2,0,0,), (0,1,2), (0,2,1), (1,0,2), (1,2,0), (2,0,1), (2,1,0)

The Pak-Stanley labeling

Pak-Stanley labeling: start by labeling central region $(0 < x_i - x_j < 1)$ with (0, 0, ..., 0). Inductively label adjacent regions:

- cross a hyperplane of the form $x_i x_j = 0 \Rightarrow$ increase *j*th coordinate;
- cross a hyperplane of the form $x_i x_j = 1 \Rightarrow$ increase *i*th coordinate.

Sam Hopkins and David Perkinson (2014)

Bigraphical arrangements

Graphical parking functions

G = (V, E) is a (finite, simple, connected) graph with $V = \{v_0, \ldots, v_n\}$. Designate v_0 to be the special *sink* vertex. Set $\widetilde{V} := V \setminus \{v_0\}$.

Definition

A *G*-parking function with respect to v_0 is $c = \sum_{i=1}^n c_i v_i \in \mathbb{Z}\widetilde{V}$ such that for all $U \subseteq \widetilde{V}$, there exists some $v_i \in U$ such that $0 \le c_i < d_U(v_i)$; where for $u \in U$ we define

 $d_{U}(u) := |\{\{u, v\} \in E : v \in V \setminus U\}|.$

Example

$$V_1 \xrightarrow{V_2} V_3$$

 $V_0 \xrightarrow{V_0} G$
Then V_0 is a *G*-pf but V_0 is not.
Sam Hopkins and David Perkinson (2014)
Bigraphical atraggements V_0 is V_0

The G-Shi arrangement

Now G = (V, E) is a (finite, simple) graph with $V = \{v_1, \ldots, v_n\}$. In 2011, Duval-Klivans-Martin, motivated by their ongoing work extending sandpile theory to higher dimension, defined the *G*-Shi arrangment

$$\mathrm{SHI}(G) := \{x_i - x_j = 0, 1 \colon \{v_i, v_j\} \in E \text{ with } i < j\}.$$

Duval-Klivans-Martin's probelm

Let G° denote the graph G with an extra vertex v_0 connected by an edge to each vertex in G. We always take v_0 to be the sink of G° .

Problem (DKM)

Show that $\{Pak\text{-}Stanley \ labels \ of \ SHI(G)\} = \{parking \ functions \ of \ G^{\circ}\}.$

Sam Hopkins and David Perkinson (2014)

Labeling G-SHI regions with partial orientations

A partial orientation \mathcal{O} of G is where we orient some edges of G and leave others blank. We identify \mathcal{O} with its set of oriented edges; i.e. $\mathcal{O} \subseteq V^2$. Partial orientations label the regions of SHI(G) in an natural way shown above. The map $\mathcal{O} \to indeg(\mathcal{O})$ recovers Pak-Stanley labels.

Sam Hopkins and David Perkinson (2014)

Bigraphical arrangements

SHI-admissible partial orientations

When does a partial orientation appear as the label of a region of SHI(G)?

Definition

A potential cycle C of \mathcal{O} is an oriented cycle of G such that if $(v_i, v_i) \in C$ then $(v_i, v_i) \notin \mathcal{O}$: that is, we can only walk along blank edges, or oriented edges in the right way. We give C a score $\nu_{\rm SHI}(C)$:

$$egin{aligned}
u_{ ext{SHI}}(\mathcal{C}) &:= \#\{(v_i, v_j) \in \mathcal{C}, i < j \colon \{v_i, v_j\} ext{ is blank in } \mathcal{O}\} \ &- \#\{(v_j, v_i) \in \mathcal{C}, i < j \colon (v_j, v_i) ext{ is oriented in } \mathcal{O}\}. \end{aligned}$$

We say \mathcal{O} is SHI-admissible if \mathcal{O} appears as a label of a region of SHI(G).

Theorem

 \mathcal{O} is SHI-admissible iff every potential cycle of \mathcal{O} has positive score.

Pf: Farkas' lemma. Note: this forces \mathcal{O} to be acyclic. Sam Hopkins and David Perkinson (2014)

Partial orientations

SHI-admissible partial orientation example

is not SHI-admissible because there is the potential cycle $C = \{(v_1, v_2), (v_2, v_3), (v_3, v_4), (v_4, v_1)\}$ and

$$u_{\text{SHI}}(C) = \#\{(v_3, v_4)\} - \#\{(v_4, v_1)\} = 0.$$

Indeed, the oriented edge (v_1, v_2) gives $x_1 < x_2$, the oriented edge (v_2, v_3) gives $x_2 < x_3$, the blank edge $\{v_3, v_4\}$ gives $x_3 < x_4 + 1$, and the oriented edge (v_4, v_1) gives $x_4 + 1 < x_1$. Summing these inequalities leads to a contradiction.

Acyclic (total) orientations and maximal parking functions

There is one class of partial orientations which is easy to see are always SHI-admissible: the acyclic (total) orientations, since they cannot have any potential cycles. It is known (Benson, Chakrabarty, Tetali) that acyclic orientations are mapped bijectively by indeg to the set of *maximal parking functions* of G° (those G° -pf that are maximal among G° -pf with the usual partial order on $\mathbb{Z}V$). The inverse of this map can be described using Dhar's algorithm, which I will discuss on the next slide.

Remark

For any SHI-admissible partial orientation \mathcal{O} , we can find a total orientation \mathcal{O}' with $\mathcal{O} \subseteq \mathcal{O}'$. This means $\operatorname{indeg}(\mathcal{O}) \leq \operatorname{indeg}(\mathcal{O}')$. It is easy to see that if c' is a G° -pf and $0 \leq c \leq c'$, then c is as well. So $\operatorname{indeg}(\mathcal{O})$ is a G° -pf. The hard part is to show that **all** G° -pfs are labels of SHI(G).

Partial orientations

Dhar's algorithm and acyclic (total) orientations

Partial orientations

The G-semiorder arrangement

We defined the G-semiorder arrangement to be the set of 2|E| hyperplanes

SEMI(G) :=
$$\{x_i - x_j = 1 : \{v_i, v_j\} \in E\}.$$

It is more symmetric than SHI(G): for instance, it doesn't depend on the labeling of the vertices. Sam Hopkins and David Perkinson (2014) Bigraphical arrangements July 2nd, 2014 14 / 26

SEMI-admissible partial orientations

Definition

Say \mathcal{O} is SEMI-admissible if it appears as a label of SEMI(G).

 ${\rm SEMI}\xspace$ a much simpler description than do ${\rm SHI}\xspace$ and a much simpler description than do ${\rm SHI}\xspace$ and a much simpler description than description that the set of the set

Theorem

 ${\cal O}$ is ${\rm SEMI}\xspace$ -admissible iff every potential cycle of ${\cal O}$ has more blank edges than oriented edges.

We show how to extend the Dhar's algorithm map from maximal G° -pfs to acyclic total orientations of G to a map from arbitrary G° -pfs to partial orientations of G, and it turns out that the image of this map lies inside the set of SEMI-admissible orientations (precisely because of this "more blanks than arrows" condition).

Dhar's algorithm and SEMI-admissible partial orientations

DKM is true for the G-semiorder arrangement

Recall that it was easy to show the set of Pak-Stanley labels of our arrangement must be a subset of the G° -parking functions. On the other hand, our Dhar's algorithm procedure shows that for any G° -parking function c, we can produce a SEMI-admissible \mathcal{O} with $indeg(\mathcal{O}) = c$. Thus,

Theorem

 $\{Pak\text{-}Stanley \ labels \ of \ SEMI(G)\} = \{parking \ functions \ of \ G^{\circ}\}.$

By making the problem more symmetric, we were able to solve it. But we really cared about G-Shi arrangement, not the G-semiorder arrangement! So we started playing around with what happens when we deform the G-semiorder arrangement into the G-Shi arrangement by translating the hyperplanes along their normals.

Partial orientations

The sliding conjecture

Conjecture

As hyperplanes in SEMI(G) are slid along their normals, so long as the central region is preserved, the set of Pak-Stanley labels stays the same.

Sam Hopkins and David Perkinson (2014)

Bigraphical arrangements

Bigraphical arrangement

Definition

For each $\{v_i, v_j\} \in E$, choose real numbers a_{ij} and a_{ji} so that there exists a $x \in \mathbb{R}^n$ with $x_i - x_j < a_{ij}$ and $x_j - x_i < a_{ji}$ for all i, j. We call $A := \{a_{ij}\}$ a *parameter list*. The *bigraphical arrangement* $\Sigma_G(A)$ is the set of 2|E|hyperplanes

$$\Sigma_G(A) := \{x_i - x_j = a_{ij} \colon \{v_i, v_j\} \in E\}.$$

Note: any $\Sigma_G(A)$ is isometric by a translation to a $\Sigma_G(A')$ with all $a'_{ij} > 0$. Examples of bigraphical arrangments include:

- the G-Shi arrangement (and thus Shi arrangement for $G = K_n$);
- the G-semiorder arrangement;
- interval order arrangements.

A-admissible partial orientations

Definition

For any partial orientation \mathcal{O} and potential cycle C of \mathcal{O} , we give C a score $\nu_A(C)$:

$$\nu_{\mathcal{A}}(C) := \sum_{(v_i, v_j) \in C \text{ blank in } \mathcal{O}} a_{ij} - \sum_{(v_i, v_j) \in C \text{ oriented in } \mathcal{O}} a_{ji}$$

We say \mathcal{O} is A-admissible if it appears as the label of some region of $\Sigma_G(A)$.

Theorem

 ${\cal O}$ is A-admissible iff every potential cycle of ${\cal O}$ has positive score.

Sam Hopkins and David Perkinson (2014)

The "sliding" conjecture is true (so DKM is true)

Theorem

For any A and G° -parking function c, there exists an A-admissible partial orientation \mathcal{O} with $\operatorname{indeg}(\mathcal{O}) = c$.

Corollary

For any parameter list A,

 $\{Pak\text{-}Stanley \ labels \ of \ \Sigma_G(A)\} = \{parking \ functions \ of \ G^{\circ}\}.$

But we don't use anything like sliding to prove this!

Proof of "sliding" conjecture

Pf: Inductive, but not really constructive. Rely on this 'topological' lemma.

Lemma

Let \mathcal{O} be an A-admissible partial orientation and let $U \subseteq V$. Let E_U denote the edges between U and $V \setminus U$. Suppose U satisfies:

- every edge in E_U is either oriented out of U or is blank;
- there is some blank edge in E_U.

Then there is a blank edge $\{u, v\} \in E_U$ with $u \in U$ such that $\mathcal{O} \cup (u, v)$ remains A-admissible.

Enumerative properties of bigraphical arrangements

Theorem

The characteristic polynomial of a generic bigraphical arrangement is

$$\chi(\Sigma_G(\text{GEN});t) = (-2)^{n-\kappa} t^{\kappa} T_G(1-t/2,1).$$

Pf: Straightforward. See Stanley's notes on hyperplane arrangements.

Corollary

The number of regions and number of bounded regions of a generic bigraphical arrangement are

$$\begin{split} r(\Sigma_G(\text{GEN})) &= 2^{n-\kappa} T_G(3/2,1) \\ b(\Sigma_G(\text{GEN})) &= 2^{n-\kappa} T_G(1/2,1) \end{split}$$

Pf: Zaslavsky's theorem.

A joke

Corollary

Suppose G is planar and G^* is its dual graph. Then the following two probabilities are equal:

- the probability that a random partial orientation (meaning we orient each edge {u, v} ∈ E as (u, v), (v, u) or blank with prob. 1/3) of G is GEN-admissible;
- the probability that, after removing each edge from G* with prob. 2/3, the resulting graph is connected.

Pf: follows from various interpretations of the Tutte polynomial. Would love to have a direct (multijective?) proof of this result!

Further directions

- The maximum of r(Σ_G(A)) over all A is 2^{n-κ}T_G(3/2,1). It is achieved exactly when A is generic. What is the minimum of r(Σ_G(A)) over all A? When is it achieved?
- Can we generalize bigraphical arrangements to higher dimensions (i.e., simplicial complices)? This was originally DKM's motivation.

Thank you!

visit arxiv.org for our papers and mit.edu/shopkins for these slides

Sam Hopkins and David Perkinson (2014)