Root system chip-firing FPSAC 2018 Dartmouth College, Hanover, NH

Sam Hopkins

MIT

July 20th, 2018

Joint work with Pavel Galashin, Thomas McConville, and Alexander Postnikov

Sam Hopkins (2018)

Classical chip-firing

Classical chip-firing (as introduced by Björner-Lovász-Shor, 1991) is a discrete dynamical system that takes place on a graph. The states are configurations of chips on the vertices. We may *fire* a vertex that has at least as many chips as neighbors, sending one chip to each neighbor:

A key property of this system is that it is *confluent*: from a given initial configuration, either all sequences of firings go on forever, or they all terminate at the same *stable* configuration (called the *stabilization*).

Chip-firing on a line

One of the first articles to discuss chip-firing was "Disks, Balls, and Walls" by Anderson et al., in the *American Math Monthly*, 1989. They studied chip firing on \mathbb{Z} (the infinite path graph):

A brief aside...

Things are a bit different in two dimensions (studied by physicists since Bak-Tang-Wiesenfeld, 1987). Stabilization of 4×10^6 chips at origin of \mathbb{Z}^2 :

Labeled chip-firing is not confluent in general

What if we started with three chips at the origin:

Labeled chip-firing is not confluent in general

What if we started with three chips at the origin:

Theorem (H.-McConville-Propp, 2017)

Suppose n = 2m is even. Then starting from n labeled chips at the origin, the chip-firing process "sorts" the chips to a unique stable configuration:

For any configuration of n labeled chips, if we set $c := (c_1, \ldots, c_n) \in \mathbb{Z}^n$ where

 $c_i :=$ the position of the chip (i),

then, for $1 \le i < j \le n$, we are allowed to fire chips (i) and (j) in this configuration as long as c is orthogonal to $e_j - e_i$; and doing so replaces the vector c by $c + (e_j - e_i)$.

Key observation: the vectors $e_j - e_i$ for $1 \le i < j \le n$ are exactly the positive roots Φ^+ of the root system Φ of Type A_{n-1} .

Root system basics

Root systems are certain highly symmetrical finite sets of vectors in Euclidean space. The key property of a root system Φ is that it's preserved by the reflection s_{α} across the hyperplane orthogonal to any root $\alpha \in \Phi$.

Root systems were first introduced in the late 19th century in the context of Lie theory because they correspond bijectively to simple Lie algebras. They have been classified into *Cartan-Killing types A_n*, B_n , etc.

Root system notation

Type A is the realm of "classical combinatorics" (e.g., permutations). Let us go over basic notation for root systems, with Type A as an example:

Object	Notation	Type A_{n-1}
Ambient v.s.	V, dim $V = r$	$\{v\perp(1,1,\ldots,1)\in\mathbb{R}^n\}$
Roots	$lpha\in \Phi$	$\pm (e_i - e_j)$, $i < j$
Coroots	$\alpha^{\vee} = \frac{2}{\langle lpha, lpha angle} lpha \in \Phi^{\vee}$	$\pm (e_i - e_j)$, $i < j$
Positive roots	$\alpha \in \Phi^+$	$e_i - e_j, i < j$
Simple roots	α_1,\ldots,α_r	$\alpha_i = e_i - e_{i+1}$
Root lattice	$Q=\mathbb{Z}[\Phi]$	$\{ v \perp (1, 1, \dots, 1) \in \mathbb{Z}^n \}$
Weight lattice	$P = \{ \mathbf{v} \colon \langle \mathbf{v}, \alpha^{\vee} \rangle \in \mathbb{Z}, \forall \alpha \in \Phi \}$	$\mathbb{Z}^n/(1,1,\ldots,1)$
Fundamental weights	ω_1,\ldots,ω_r	$\omega_i = (\overbrace{1,\ldots,1}^i, 0, \ldots, 0)$
Weyl group	$W = \langle s_{\alpha}, \alpha \in \Phi \rangle \subseteq GL(V)$	Symmetric group S_n

Sam Hopkins (2018)

Root system chip-firing

July 20th, 2018 10 / 25

The description of labeled chip-firing in terms of positive roots of A_{n-1} generalizes naturally to any root system Φ : for a weight $\lambda \in P$, we allow the firing moves $\lambda \to \lambda + \alpha$ for a positive root $\alpha \in \Phi^+$ whenever λ is orthogonal to α .

We call the resulting system the *central-firing* process for Φ (because we allow firing from a weight λ when λ belongs to the *Coxeter hyperplane* arrangement, which is a central arrangement).

Confluence of central-firing

Question

For any root system Φ and weight $\lambda \in P$, when is central-firing confluent from λ ?

Answer: it's complicated.

But it seems somewhat related to the Weyl vector:

$$\rho := \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha = \sum_{i=1}^r \omega_i.$$

Classification of confluence for origin/fundamental weights

Conjecture (G.-H.-M.-P.)

Confluence of central-firing from λ for $\lambda = 0$ or λ a fundamental weight is determined by the table on the right. To first order, central-firing is confluent from λ iff $\lambda \neq \rho$ modulo Q. Exceptions to this are in red or green.

This conjecture is proved in some but not all cases (e.g. for $\lambda = 0$ and $\Phi = A_r$ or B_r , it follows from H.-M.-P. theorems above).

Confluence of central-firing modulo the Weyl group

Theorem (Galashin-H.-McConville-Postnikov)

For any root system Φ , and from any initial weight λ , central-firing is confluent modulo the action of the Weyl group W.

In Type A the Weyl group is the symmetric group, so modding out by the Weyl group is the same as forgetting the labels of chips. Thus this theorem gives a generalization of *unlabeled* chip-firing on a line to any root system.

Note: this is very different from the Cartan matrix chip-firing studied by Benkart-Klivans-Reiner, 2016 (e.g., for $\Phi = A_{n-1}$, ours corresponds to chip-firing of *n* chips on the infinite path, whereas B.-K.-R. corresponds to chip-firing of any number of chips on the *n*-cycle).

For *simply laced* root systems can even describe unlabeled central-firing as a certain numbers game on the Dynkin diagram.

Interval-firing

Central-firing has move $\lambda \to \lambda + \alpha$ when $\langle \lambda, \alpha^{\vee} \rangle = 0$ for $\lambda \in P, \alpha \in \Phi^+$. We found some remarkable deformations of this process.

For any $k \in \mathbb{N}$, define the symmetric interval-firing process by

$$\lambda \to \lambda + \alpha$$
 if $\langle \lambda, \alpha^{\vee} \rangle + 1 \in \{-k, -k+1, \dots, k-1\}$

and the truncated interval-firing process by

$$\lambda \to \lambda + \alpha \qquad \text{if } \langle \lambda, \alpha^{\vee} \rangle + 1 \in \{-k+1, -k+2 \dots, k-1\}.$$

(These are analogous to the extended Φ -Catalan and Φ -Shi hyperplane arrangements, respectively.)

(Taking a particular $k \to \infty$ limit recovers the Cartan matrix chip-firing of Benkart-Klivans-Reiner.)

Pictures of interval-firing

Pictures of interval-firing

Pictures of interval-firing

When $\Phi = A_{n-1}$, we can interpret interval-firing in terms of chips. The smallest nontrivial case is symmetric k = 0 interval-firing, which has $\lambda \to \lambda + \alpha$ for $\lambda \in P, \alpha \in \Phi^+$ when $\langle \lambda, \alpha^{\vee} \rangle = -1$. This corresponds to allowing *(adjacent) transpositions* of (i) and (j) if they're out of order:

When $\Phi = A_{n-1}$, we can interpret interval-firing in terms of chips. The smallest nontrivial case is symmetric k = 0 interval-firing, which has $\lambda \to \lambda + \alpha$ for $\lambda \in P, \alpha \in \Phi^+$ when $\langle \lambda, \alpha^{\vee} \rangle = -1$. This corresponds to allowing *(adjacent) transpositions* of (i) and (j) if they're out of order:

When $\Phi = A_{n-1}$, we can interpret interval-firing in terms of chips. The smallest nontrivial case is symmetric k = 0 interval-firing, which has $\lambda \to \lambda + \alpha$ for $\lambda \in P, \alpha \in \Phi^+$ when $\langle \lambda, \alpha^{\vee} \rangle = -1$. This corresponds to allowing *(adjacent) transpositions* of (i) and (j) if they're out of order:

When $\Phi = A_{n-1}$, we can interpret interval-firing in terms of chips. The smallest nontrivial case is symmetric k = 0 interval-firing, which has $\lambda \to \lambda + \alpha$ for $\lambda \in P, \alpha \in \Phi^+$ when $\langle \lambda, \alpha^{\vee} \rangle = -1$. This corresponds to allowing *(adjacent) transpositions* of (i) and (j) if they're out of order:

When $\Phi = A_{n-1}$, we can interpret interval-firing in terms of chips. The smallest nontrivial case is symmetric k = 0 interval-firing, which has $\lambda \to \lambda + \alpha$ for $\lambda \in P, \alpha \in \Phi^+$ when $\langle \lambda, \alpha^{\vee} \rangle = -1$. This corresponds to allowing *(adjacent) transpositions* of (i) and (j) if they're out of order:

When $\Phi = A_{n-1}$, we can interpret interval-firing in terms of chips. The smallest nontrivial case is symmetric k = 0 interval-firing, which has $\lambda \to \lambda + \alpha$ for $\lambda \in P, \alpha \in \Phi^+$ when $\langle \lambda, \alpha^{\vee} \rangle = -1$. This corresponds to allowing *(adjacent) transpositions* of (i) and (j) if they're out of order:

When $\Phi = A_{n-1}$, we can interpret interval-firing in terms of chips. The smallest nontrivial case is symmetric k = 0 interval-firing, which has $\lambda \to \lambda + \alpha$ for $\lambda \in P, \alpha \in \Phi^+$ when $\langle \lambda, \alpha^{\vee} \rangle = -1$. This corresponds to allowing *(adjacent) transpositions* of (i) and (j) if they're out of order:

Theorem (Galashin-H.-McConville-Postnikov)

For any root system Φ , and any $k \ge 0$, the symmetric and truncated interval-firing processes are confluent (from all initial points).

The proof is geometric, using the theory of convex polytopes. The main ingredient is a formula for *traverse lengths of permutohedra*.

The map η

Define $\eta: P \to P$ by $\eta(\lambda) = \lambda + w_{\lambda}(\rho)$, where $w_{\lambda} \in W$ is of min. length such that $w_{\lambda}^{-1}(\lambda)$ is dominant (so λ dominant $\Rightarrow \eta(\lambda) = \lambda + \rho$).

Lemma (Galashin-H.-McConville-Postnikov)

The stable points of symmetric interval-firing are

$$\{\eta^k(\lambda) \colon \lambda \in P, \langle \lambda, \alpha^{\vee} \rangle \neq -1 \text{ for all } \alpha \in \Phi^+\},\$$

and the stable points of truncated interval-firing are

 $\{\eta^k(\lambda):\lambda\in P\}.$

Ehrhart-like polynomials

In the pictures above, we saw that the set of weights with interval-firing stabilization $\eta^k(\lambda)$ looks "the same" across all values of k, except that it gets "dilated" as k grows.

Following Ehrhart theory, for $k \ge 0$ we define the quantities

 $L_{\lambda}^{\text{sym}}(k) := \#\mu \text{ with symmetric interval-firing stabilization } \eta^{k}(\lambda);$ $L_{\lambda}^{\text{tr}}(k) := \#\mu \text{ with truncated interval-firing stabilization } \eta^{k}(\lambda).$

Theorem (Galashin-H.-McConville-Postnikov)

For all Φ and all $\lambda \in P$, $L_{\lambda}^{sym}(k)$ is a polynomial in k.

Theorem (Galashin-H.-McConville-Postnikov)

For simply laced Φ and all $\lambda \in P$, $L_{\lambda}^{tr}(k)$ is a polynomial in k.

Positivity conjectures

Conjecture (Galashin-H.-McConville-Postnikov)

For all Φ and all $\lambda \in P$, both $L_{\lambda}^{sym}(k)$ and $L_{\lambda}^{tr}(k)$ are polynomials with nonnegative integer coefficients in k.

In subsequent work with Alex Postnikov, we proved the "half" of this conjecture concerning $L_{\lambda}^{\text{sym}}(k)$.

Theorem (H.-Postnikov)

Let $\lambda \in P$ be such that $\langle \lambda, \alpha_i^{\vee} \rangle \in \{0, 1\}$ for all $1 \leq i \leq r$. Then

$$L_{\lambda}^{\mathrm{sym}}(k) = \sum_{\substack{X \subseteq \Phi^+, \\ lin. ind.}} \# \left\{ \mu \in W(\lambda) : \frac{\langle \mu, \alpha^{\vee} \rangle \in \{0, 1\} \text{ for}}{all \ \alpha \in \Phi^+ \cap \operatorname{Span}_{\mathbb{R}}(X)} \right\} \cdot \operatorname{rVol}(X) \cdot k^{\#X}.$$

Starting point: Stanley's formula (1980) for Ehrhart poly.'s of zonotopes.

Sam Hopkins (2018)

Thank you!

References:

- Hopkins, McConville, Propp. "Sorting via chip-firing." Electronic Journal of Combinatorics, 24(3), 2017.
- Galashin, Hopkins, McConville, Postnikov. "Root system chip-firing I: Interval-firing." arXiv:1708.04850.
- Galashin, Hopkins, McConville, Postnikov. "Root system chip-firing II: Central-firing." arXiv:1708.04849.
- Hopkins, Postnikov. "A positive formula for the Ehrhart-like polynomials from root system chip-firing." arXiv:1803.08472