
PROBLEMS FROM PROPP’S 64TH BIRTHDAY CONFERENCE

The following
√
64 open problems were presented at “Statistical and Dynamical

Combinatorics: a celebration of Jim Propp’s 2(
4
2)th Birthday,” which took place at

MIT on June 26–29, 2024 (https://dept.math.lsa.umich.edu/~speyer/JIM/).
These problems were recorded by Sam Hopkins.

Peter Winkler – “Fencing off the blob”. At time zero the blob starts as a unit
disc on the plane and, if unimpeded, its radius will grow at a rate of one unit per
unit of time. You are capable of building fence anywhere on the plane at a rate of λ
total length of fence per unit of time. When the blob encounters this fence, it will
be impeded by the fence but will grow around it, as depicted below:

Another way to envision the blob is as an advancing wavefront, with fence absorbing
the wave. Let λcrit be the critical value of λ below which the blob will grow off to
infinity no matter what you do, and above which you can eventually confine the
blob to a finite region. The problem is: determine λcrit. For example, λcrit ≤ 2π.

This is a continuous model of firefighting; for a similar discrete model, see [3].

Sam Hopkins – “A cyclic action on plane trees”. Consider the set of plane
trees with n+ 1 vertices, a set with cardinality the Catalan number Cn = 1

n+1

(
2n
n

)
.

We define an operator A acting on this set as follows. In pictures:

In pseudocode:

def A(T) :

i f T = [ ] :

return T

else :

S = T. pop ( )

return A(S) + [A(T) ]
1

https://dept.math.lsa.umich.edu/~speyer/JIM/
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where we encode a plane tree as a list (so the above tree is T = [[[], [], [[]]], [], [[]]]),
pop removes and returns the first element of a list, and + is concatenation of lists.
This operator is invertible and hence defines a bijection on this set of plane trees.
In fact, it is the composition of the two “natural correspondences” between plane
trees and binary trees coming from left- or right-branching; see Donaghey [9].

In some regards, the bijection A behaves very chaotically. For any given tree T ,
it seems hard to determine the minimal m such that Am(T ) = T . And for n = 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, . . . the order of A is 1, 2, 6, 6, 30, 120, 720, 15120, 1164240,
15135120, 283931716867999200, . . ., where this last number 283931716867999200 =
25 · 33 · 52 · 72 · 11 · 13 · 17 · 23 · 31 · 37 · 47 · 89 has several large prime factors.

But the bijection A also exhibits surprising regularity. For example, Shapiro [14]
showed that it behaves very regularly on a large subset of trees. Namely, consider
the subset of plane trees for which all non-root vertices have at most one child; this
subset is in bijection with the compositions of n in an straightforward way. Shapiro
showed that for the tree T corresponding to a composition α, A3(T ) is the tree
corresponding to the conjugate composition α′, and hence A6(T ) = T .

The problem is: what more can be said about this cyclic action A on plane trees,
especially from the modern perspective of dynamical algebraic combinatorics (e.g.,
homomesy, resonance, etc.)?

Colin Defant – “The c-bubble sort permuton”. Let Sn be the symmetric
group and let τi : Sn → Sn be the “toggle” which swaps the ith and (i+1)st letters of
a permutation if they are out of order, or otherwise does not change the permutation.
Let Bubble = τ1 · τ2 · · · τn−1 be the bubble sort operator. It is well-known that this
operator really sorts in the sense that there is some minimal m = o(n) such that
Bubblem sends every permutation to the identity. But what happens if we only
partially bubble sort? In other words, what is the image of a uniformly random
permutation under Bubbleαm for some 0 < α < 1? The following figure is from
DiFranco [8] (see also https://www.youtube.com/watch?v=Gm8v_MR7TGk):

As we can see, the resulting random permutation is confined to a region with a
curved boundary, and as n → ∞ we obtain an interesting limit shape, which in
fancy language could be called a permuton. In his preprint, DiFranco describes and
rigorously establishes the existence of this limit shape.

https://www.youtube.com/watch?v=Gm8v_MR7TGk
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If i1, i2, . . . , in−1 is any permutation of the indices 1, 2, . . . , n−1, we could consider
the corresponding “permuted” bubble sort operator τi1 · τi2 · · · τin−1 . In fact, since
the toggles satisfy the braid relations, this operator only depends on the choice of
a Coxeter element c = si1si2 · · · sin−1 . So let us call this operator the c-bubble sort
operator and denote it by Bubblec. Again, there will be some minimal m = o(n)
for which Bubblemc sorts all permutations. Extending the work of DiFranco, we
are interested in the limit shape of a partially c-bubble sorted permutation, i.e., a
uniformly random permutation under Bubbleαmc for some 0 < α < 1.

An issue, however, is that we need the make choice of the Coxeter element c
uniformly in n. For instance, beyond the standard Coxeter element c = s1s2 · · · sn−1,
another sensible choice would be the bipartite Coxeter element c = s1s3 · · · s2s4 · · · ,
whose corresponding c-bubble sort operator first sorts odd positions and then even
positions. Colin showed us the following suggestive images for the bipartite bubble
sorting process:

A choice of Coxeter element is the same as an orientation of the Type A Dynkin
diagram. Equivalently, a Coxeter element corresponds to a walk with up steps (1, 1)
and down steps (1,−1), where an oriented edge from i to i+1 corresponds to an up
step in position i and an oriented edge from i + 1 to i corresponds to a down step
in position i. In this way, the usual bubble sort has a 45◦ line as its walk, and the
bipartite bubble sort has (approximately) a horizontal line as its walk.

Colin suggested that we can enforce uniformity on the Coxeter element by having
its corresponding walk approach some limiting curve. So the problem is: if we
let n → ∞ and choose a Coxeter element c whose walk (appropriately re-scaled)
approaches some limiting curve, does the partially c-bubble sorted permutation yield
an interesting permuton whose shape we can describe?

Lionel Levine – “Maximal matchings of the Aztec diamond”. In his talk,
Kyle Petersen explained that Conway’s napkin problem [4] has the following equiv-
alent description in terms of maximal matchings of the cycle graph of length 2n.
Suppose the cycle is bicolored, black and white. Build up a matching by repeatedly
doing the following. Choose an unmatched black vertex uniformly at random. If
at least one of its neighboring white vertices is unmatched, choose an unmatched
neighbor uniformly at random and add that edge to our matching. If all its neigh-
boring white vertices have been matched already, do not add an edge; the black
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vertex will remain unmatched. We terminate with a maximal – but not necessarily
perfect! – matching of the cycle. Kyle pointed out that this process makes sense
on any bipartite graph, and after the talk David Speyer suggested looking at the
process on the Aztec diamond graph.

Using the “copy and paste loop” technique for writing code with AI assistance
that he described in his talk, Lionel quickly produced code to simulate this maximal
matching process on the Aztec diamond graph, and obtained this image:

This image suggests that there is no frozen region for the random maximal matching
constructed via this process, and that about 90% of the vertices end up matched.

The first problem is: can these facts about the maximal matching process on the
Aztec diamond be rigorously proved?

Then, Lionel suggested the following extension. It should be possible to upgrade
any maximal matching to a perfect matching by greedily selecting augmenting paths.
So, we can start with a maximal matching of the Aztec diamond produced by the
process described above, and then upgrade it to a perfect matching. We expect that
the resulting distribution on perfect matchings is not uniform.

The second problem is: analyze the resulting distribution on perfect matchings
of the Aztec diamond. Does it have a frozen region?

Mikhail Skopenkov – “Square-tileable polyhedra”. The question of which
polygons can be tiled by squares is classical. In these tilings, the square tiles can
be of varying sizes, and the tiling does not need to be edge-to-edge. For example, a
square tiling might look like this:
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A famous result of Dehn is that an a × b rectangle is square-tileable if and only if
the ratio a/b is rational. In [11], Kenyon considers square tilings of surfaces, and
classifies the Euclidean tori which are square-tileable.

The problem is: which polyhedra (i.e., three-dimensional convex polytopes) have
boundaries that are square-tileable? In these tilings we allow folding of the square
tiles over the edges of the polyhedra, so that the question does not just reduce to
whether each face is square-tileable. It turns out that square-tileability questions
are related to questions about certain resistor networks, and one motivation for this
problem comes from potential theory.

Aaron Abrams – “Longest pattern subsequence”. It is a very famous result
(of Vershik–Kerov and Logan–Shepp) that the expected length of a longest increas-
ing subsequence of a uniformly random permutation in the symmetric group Sn is
asymptotic to 2

√
n. See for instance the book by Romik [13].

Stanley [15] showed that the expected length of a longest alternating subsequence
of a random permutation in Sn is asymptotic to 2

3n. Notice that this expectation is
linear in n, unlike the increasing case.

Let U signify an ascent (“up”) andD signify a descent (“down”). Then an increas-
ing subsequence can be encoded as the pattern U , and an alternating subsequence
can be encoded as the pattern UD. This means that for an increasing subsequence
we want an ascent, followed by an ascent, followed by an ascent, and so on, and for
an alternating subsequence we want an ascent, followed by a descent, followed by an
ascent, followed by a descent, and so on. (So we think of the pattern as “repeating,”
i.e., U = UUU . . . and UD = UDUD . . ..) In [1], Abrams and his coauthors showed
that for any non-constant pattern of U ’s and D’s, a longest subsequence adhering
to this pattern in a random permutation of Sn has expected length linear in n. But
they were not able to derive a general formula for the constant a for which this
expectation is asymptotic to an.

The problem is: for other patterns beyond alternating, determine the constant
in this expected longest pattern subsequence length. For example, for the pattern
UUD the constant appears empirically to be 0.57744 . . ., and for the pattern UUDD
the constant appears to be 0.561 . . ..

David Speyer – “Between random plane partitions and sorting networks”.
Recall that a random lozenge tiling of a large regular hexagon looks like this:
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The arctic circle phenomenon for such tilings was established by Cohn–Larsen–
Propp [6] in the late 90s. Of course, these random lozenge tilings are nothing other
than random boxed plane partitions.

More recently, Angel–Holroyd–Romik–Virag [2] considered random sorting net-
works. By taking a slice in the middle of a random sorting network, we get a random
permutation which also has a distinctive circular pattern:

The existence of this limit shape was rigorously established by Dauvergne [7].
Random sorting networks can be thought of as random reduced words for the

longest element in the symmetric group Sn. Elnitsky [10] explained how (commu-
tation classes of) these reduced words can be represented by rhombus tilings of the
regular 2n-gon. For example, this figure appears in a paper of Tenner [16]:

As mentioned, rhombus tilings correspond to reduced words up to commutation.
It is not clear whether sampling from the set of reduced words gives the same
asymptotic behavior as sampling from reduced words up to commutation. David
says it would be interesting to find out.

But the main problem is: study random rhombus tilings of a large regular 2m-
gon, where m is greater than 3 but is not growing with the scale parameter. These
random structures should be “between” random plane partitions and random sorting
networks. David suggested in particular that random rhombus tilings of a large
octogon could already be very interesting.

Jim Propp – “2-adic behavior of domino & square Aztec diamond tilings”.
This problem appears in [12]. Consider tilings of the Aztec diamond, where we allow
the usual 2×1 and 1×2 domino tiles, but also 2×2 square tiles. For example, here
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are some of these tilings of the Aztec diamond of order 2:

Using the tiling code that David desJardins described in his talk, Jim found that
the number M(n) of such tilings of the Aztec diamond of order n is given by the
following table:

n M(n)
0 1
1 3
2 19
3 293
4 10917
5 996599
6 222222039
7 121552500713
8 162860556763865
9 535527565429290907
10 4318205059450240425083
11 85475498697714319842817853
12 4151186175463797888945512144221

This table suggests M(n) does not have any simple product formula.
However, M(n) appears to exhibit interesting behavior modulo powers of 2. It

can be shown that M(n) is odd for all n (see [12, §5]). And if we look mod 4, we see
that M(n) apparently follows the pattern 1, 3, 3, 1, 1, 3, 3, 1, . . . which has period 4.
Similarly, M(n) mod 8 appears to be periodic with period 8. This suggests that the
value of M(n) mod 2i might depend only on the value of n mod 2i, which would
imply that M(n) is a 2-adically continuous function of n.

A result of a similar flavor was proved by Cohn in [5]. Namely, the number of
domino tilings of a 2n × 2n square has the form 2n(f(n))2, and Cohn showed that
this function f(n) is 2-adically continuous. He did this simply by analzying the
famous Kasteleyn/Fisher–Temperley formula for the number of such tilings.

The problem is: prove the 2-adic continuity of the tiling number M(n). Jim
suggested that one approach to this problem could be by developing an extension
of the Kasteleyn permanent/determinant method which would apply to this setting
where we have tiles that are bigger than dimers.
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