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Parking functions

A parking function of length n is a sequence α = (α1, . . . , αn) of positive
integers whose weakly increasing rearrangement αi1 ≤ αi2 ≤ · · · ≤ αin

satisfies αij ≤ j for all j = 1, . . . , n.

Let PF(n) = {parking functions of length n}. For example:

PF(2) = {(1, 1), (1, 2), (2, 1)}

Their name comes from an interpretation in terms of parking cars.

Theorem (Konheim and Weiss 1966, Pollak 1974)

#PF(n) = (n + 1)n−1

This same sequence of numbers appears in several other contexts...
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Labeled trees

Let Tree(n) = {labeled trees on vertex set {1, 2, . . . , n}}. For example:

Tree(3) =


1

2 3

,
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3

,
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2


Theorem (Borchardt 1860, Cayley 1889)

#Tree(n + 1) = (n + 1)n−1

There are many known bijections between parking functions and trees, and
these two classes of combinatorial objects have more connections too...
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Inversions in permutations

Let Sn be the symmetric group of permutations of {1, . . . , n}.
Recall that for a permutation w = w1 . . .wn ∈ Sn (in one-line notation),
an inversion of w is a pair (i , j) of indices 1 ≤ i < j ≤ n with wi > wj .

We use inv(w) to denote the number of inversions of w . For example:

w = 1532476 ⇒ inv(w) = #{(2, 3), (2, 4), (2, 5), (3, 4), (6, 7)} = 5

Theorem (Rodrigues 1839)∑
w∈Sn

qinv(w) = [n]q!,

where we use standard “q-notation” [k]q = 1−qk

1−q = 1+ q+ · · ·+ qk−1 and
[n]q! = [n]q · [n − 1]q · · · [2]q · [1]q.

Sam Hopkins Parking functions and tree inversions October 18th, 2025 4 / 18



Inversions in trees

Let T ∈ Tree(n). We write i ≤T j to mean i appears in the unique path
from j to 1. An inversion of T is a pair (i , j) of vertices 1 ≤ i < j ≤ n
with j ≤T i . We use inv(T ) to denote the number of inversion of T .

For example:

1

8 6

3 9 5

4 2 7

T

⇒ inv(T ) = #{(2, 3), (2, 8), (3, 8), (4, 8), (5, 6)}
= 5

Tree inversions generalize permutation inversions for “linear” trees.
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Co-sum of parking functions & Kreweras’s result

For α ∈ PF(n), we define its co-sum to be cosum(α) =
(n+1

2

)
−
∑n

i=1 αi .
Parking functions of maximal sum have co-sum zero.

Theorem (Kreweras 1980)∑
α∈PF(n) q

cosum(α) =
∑

T∈Tree(n+1) q
inv(T )

For example, for n = 2:

qcosum(1,1)+qcosum(1,2)+qcosum(2,1) = q+2 = q

inv(
1
3
2
)

+q

inv(
1
2
3
)

+q

inv(
1

2 3

)

Kreweras’s original proof was via generating functions. Bijective proofs
were later given by Shin (2007), Guedes de Oliveira & Las Vergnas (2011),
and Perkinson, Yang, & Yu (2017).
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Vector parking functions

We now consider a variant of parking functions. Let N = {0, 1, . . .} and
let x = (x1, . . . , xn) ∈ Nn be a nonnegative integer vector.

An x-parking function is a sequence α = (α1, . . . , αn) of positive integers
whose increasing rearrangement ai1 ≤ · · · ≤ ain satisfies aij ≤ x1 + · · ·+ xj
for all j = 1, . . . , n. We let PF(x) = {x-parking functions}.

For example:

x = (1, 2) ⇒ PF(x) = {(1, 1), (1, 2), (2, 1), (1, 3), (3, 1)}

Notice that PF(n) = PF(x) where x = (1, 1, . . . , 1). Also note that
rational parking functions are a special case of x-parking functions.
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Enumerating vector parking functions

Define the set Γ(n) of nonnegative integer vectors by

Γ(n) = {(γ1, . . . , γn) ∈ Nn :

j∑
i=1

γi ≥ j for all 1 ≤ j ≤ n − 1 and

n∑
i=1

γi = n}

It is well-known that #Γ(n) = Cn = 1
n+1

(2n
n

)
, the Catalan number.

Theorem (Pitman and Stanley 2002)

For any x ∈ Nn,

#PF(x) =
∑

α∈PF(n)

xα1xα2 · · · xαn

=
∑

γ∈Γ(n)

n!

γ1!γ2! · · · γn!
xγ11 xγ22 · · · xγnn
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Co-sum enumerator of vector parking functions

Kung and Yan (2003) noted that Pitman–Stanley’s work could also be
used to obtain the co-sum enumerator of vector parking functions:

Theorem (Kung and Yan 2003)

For any x ∈ Nn,

∑
α∈PF(x)

qcosum(α) =
∑

γ∈Γ(n)

n!

γ1!γ2! · · · γn!
q
∑n

i=1(γ1+γ2+···+γi−i)xi+1

n∏
i=1

[xi ]
γi
q

This is a useful formula (a sum over Catalan many terms), but it does not
obviously reduce to Kreweras’s result in the case when x = (1, 1, . . . , 1).

Is there some formula involving trees? In fact, there is...
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Rooted plane trees

A rooted plane tree is a T ∈ Tree(n) for which:

i ≤T j implies i ≤ j for all 1 ≤ i , j ≤ n;

i ≤T k implies i ≤T j for all 1 ≤ i < j < k ≤ n.

(Can just think of this as saying the tree is labeled in depth-first order.)

Let RPT(n) = {rooted plane trees in Tree(n)}.
For example, an element of RPT(9) is:

1

2 6

3 7 8

4 5 9

It is well-known that #RPT(n + 1) = Cn, again the Catalan number.
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Admissible vertex orders and inversions

Let T ∈ RPT(n). An admissible vertex order of T is a total order ≺ on
the non-root vertices (i.e., {2, . . . , n}) for which i < j with i and j siblings
in T implies that j ≺ i . Let AVO(T ) = {admissible vertex orders of T}.

For ≺∈ AVO(T ), an inversion of ≺ is a pair (i , j) with i ≤T j but j ≺ i .

For example:

1

2 6

3 7 8

4 5 9

T
5 ≺ 3 ≺ 4 ≺ 8 ≺ 6 ≺ 9 ≺ 2 ≺ 7

⇒ inversions of T w.r.t. ≺
= {(2, 3), (2, 4), (2, 5), (3, 5), (6, 8)}
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Co-sum enumerator of vector parking functions, again

Theorem (Gaydarov and Hopkins 2015)

For any x ∈ Nn,

∑
α∈PF(x)

qcosum(α) =
∑

T∈RPT(n+1)

 ∑
≺∈AVO(T )

q

∑
i≤T j ,
j≺i

XparT (i)

 n∏
i=1

[xi ]
#childT (i)
q

where parT (i) denotes the parent of the vertex i in T , and #childT (i)
denotes the number of children of the vertex i in T .

This reduces to Kreweras’s result when x = (1, 1, . . . , 1), because...
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Labeled trees vs. rooted plane trees

Given any T ∈ Tree(n), we can produce a pair (T ′,≺) with T ′ ∈ RPT(n)
and ≺∈ AVO(T ) by performing a depth-first search of T , starting at the
root 1, and always preferring to visit the vertex with the largest label:

1

8 6

3 9 5

4 2 7

T

⇒

1

2 6

3 7 8

4 5 9

T ′

5 ≺ 3 ≺ 4 ≺ 8 ≺ 6 ≺ 9 ≺ 2 ≺ 7

This procedure gives a bijective correspondence, and it preserves inversions.
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Comparing the formulas, n = 2

Γ(2) = {(2, 0), (1, 1)} so the Kung and Yan formulas says:∑
α∈PF(x1,x2)

qcosum(α) = qX2 [x1]
2 + 2[x1][x2].

The pairs (T ,≺) with T ∈ RPT(3) and ≺∈ AVO(T ) are 1

2 3

, 3 ≺ 2

 ,

 1
2
3
, 2 ≺ 3

 ,

 1
2
3
, 3 ≺ 2


so the Gaydarov and Hopkins formula says:∑

α∈PF(x1,x2)

qcosum(α) = [x1]
2 + (1 + qX1)[x1][x2].

In fact, qX2 [x1]
2 + 2[x1][x2] = [x1]

2 + (1+ qX1)[x1][x2] for all (x1, x2) ∈ N2.
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Comparing the formulas, n = 3

Comparing the two formulas for n = 3 implies that

q2x2+x3 [x1]
3
q + 3qx2+x3 [x1]

2
q[x2]q + 3qx2 [x1]

2
q[x3]q + 3qx3 [x1]q[x2]

2
q + 6[x1]q[x2]q[x3]q

= [x1]
3
q + (1 + 2qx1)[x1]

2
q[x2]q + (2 + qx1)[x1]

2
q[x3]q + (1 + qx1 + q2x1)[x1]q[x2]

2
q

+(1 + qx1 + qx2 + q2x1 + qx1+x2 + q2x1+x2)[x1]q[x2]q[x3]q

for all (x1, x2, x3) ∈ N3.

This identity is true but far from obvious!

Notice how the “monomials” [x1]
c1
q [x2]

c2
q · · · [xn]cnq on both sides are the

same, but the “coefficients” in front of these are different.
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The proof: chip-firing

The proof of our formula uses ideas from chip-firing, specifically, a version
of Dhar’s burning algorithm due to Perkinson, Yang, and Yu (2017).

However, note that graphical parking functions are different from vector
parking functions, so we had to use a “symmetrization” trick.
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Conclusion

I end with a couple of scattershot thoughts related to this research.

Even if you already have one formula, maybe you can find another!

With your favorite variant of parking functions, it might be interesting
to study the (co-)sum enumerator of these parking functions, and try
to find a connection to trees and their inversions!

This research was done in 2014 at RSI, a summer program run by
MIT for talented high school students to engage in scientific research.
My mentee Petar Gaydarov was a high school student from Bulgaria.
I’m very proud of the work he did; he won a “Karl Menger Memorial
Prize” for this work. All of us, in America and throughout the world,
benefit tremendously from scientific exchange between countries!
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Thank you!
see arXiv:1506.03470 for the paper
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